Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309660897> ?p ?o ?g. }
- W4309660897 endingPage "120652" @default.
- W4309660897 startingPage "120652" @default.
- W4309660897 abstract "The influence of long-range transport (LRT) of air pollutants on neighboring regions and countries has been documented. The magnitude of LRT aerosols and related constituents can misdirect control strategies for local air quality management. In this study, we aimed to quantify PM2.5 (diameter less than 2.5 μm, PM2.5) and associated metals derived from local sources and LRT in different geographic locations in Taiwan using advanced receptor models. We collected daily PM2.5 samples (n = ∼1000) and analyzed 28 metals every three days from 2016 to 2018 in the northern, central-south, eastern, and southern areas of Taiwan. We first used a machine learning technique with a cluster algorithm coupled with a backward trajectory to classify local, regional, and LRT-related aerosols. We then quantified the source contributions with a positive matrix factorization (PMF) model for Taiwan weighted by region-specific populations. The northern and eastern regions were found to be more vulnerable to LRT-related PM2.5 and metals than the central-south and southern regions in Taiwan. The LRT increased Pb and As concentrations by 90-200% and ∼40% in the northern and central-south regions. Ambient PM2.5-metals mainly originated from local traffic-related emissions in the northern, central-south, and southern regions, whereas oil combustion was the primary source of PM2.5-metals in the eastern region. By subtracting the influence from the LRT, the contributions of domestic emission sources to ambient PM2.5 metals in Taiwan were 35% from traffic-related emission, 17% from non-ferrous metallurgy, 13% from iron ore and steel factories, 12% from coal combustion, 12% from oil combustion, 10% from incinerator emissions, and <1% from cement manufacturing emissions. This study proposed an advanced method for refining local source contributions to ambient PM2.5 metals in Taiwan, which provides useful information on regional control strategies." @default.
- W4309660897 created "2022-11-29" @default.
- W4309660897 creator A5019017419 @default.
- W4309660897 creator A5020119751 @default.
- W4309660897 creator A5038661514 @default.
- W4309660897 creator A5039375028 @default.
- W4309660897 creator A5047886124 @default.
- W4309660897 creator A5075158135 @default.
- W4309660897 creator A5085418653 @default.
- W4309660897 creator A5087291619 @default.
- W4309660897 date "2023-01-01" @default.
- W4309660897 modified "2023-09-24" @default.
- W4309660897 title "Using cluster algorithms with a machine learning technique and PMF models to quantify local-specific origins of PM2.5 and associated metals in Taiwan" @default.
- W4309660897 cites W1485504984 @default.
- W4309660897 cites W1964036486 @default.
- W4309660897 cites W1976174571 @default.
- W4309660897 cites W1984767934 @default.
- W4309660897 cites W1998931865 @default.
- W4309660897 cites W2029279482 @default.
- W4309660897 cites W2038178482 @default.
- W4309660897 cites W2040276942 @default.
- W4309660897 cites W2041893222 @default.
- W4309660897 cites W2059996271 @default.
- W4309660897 cites W2064705993 @default.
- W4309660897 cites W2098294873 @default.
- W4309660897 cites W2164767183 @default.
- W4309660897 cites W2197716351 @default.
- W4309660897 cites W2492241945 @default.
- W4309660897 cites W2561819419 @default.
- W4309660897 cites W2750153039 @default.
- W4309660897 cites W2793033142 @default.
- W4309660897 cites W2885566692 @default.
- W4309660897 cites W2887306976 @default.
- W4309660897 cites W2888796609 @default.
- W4309660897 cites W2892162670 @default.
- W4309660897 cites W2902960097 @default.
- W4309660897 cites W2935883518 @default.
- W4309660897 cites W2970033682 @default.
- W4309660897 cites W2973369637 @default.
- W4309660897 cites W3035197961 @default.
- W4309660897 cites W3037375387 @default.
- W4309660897 cites W3101087684 @default.
- W4309660897 cites W3103200462 @default.
- W4309660897 cites W3127975671 @default.
- W4309660897 cites W3134389260 @default.
- W4309660897 cites W3168197932 @default.
- W4309660897 cites W3213752833 @default.
- W4309660897 doi "https://doi.org/10.1016/j.envpol.2022.120652" @default.
- W4309660897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36375582" @default.
- W4309660897 hasPublicationYear "2023" @default.
- W4309660897 type Work @default.
- W4309660897 citedByCount "0" @default.
- W4309660897 crossrefType "journal-article" @default.
- W4309660897 hasAuthorship W4309660897A5019017419 @default.
- W4309660897 hasAuthorship W4309660897A5020119751 @default.
- W4309660897 hasAuthorship W4309660897A5038661514 @default.
- W4309660897 hasAuthorship W4309660897A5039375028 @default.
- W4309660897 hasAuthorship W4309660897A5047886124 @default.
- W4309660897 hasAuthorship W4309660897A5075158135 @default.
- W4309660897 hasAuthorship W4309660897A5085418653 @default.
- W4309660897 hasAuthorship W4309660897A5087291619 @default.
- W4309660897 hasConcept C100970517 @default.
- W4309660897 hasConcept C126314574 @default.
- W4309660897 hasConcept C127313418 @default.
- W4309660897 hasConcept C153294291 @default.
- W4309660897 hasConcept C159985019 @default.
- W4309660897 hasConcept C164866538 @default.
- W4309660897 hasConcept C178790620 @default.
- W4309660897 hasConcept C185592680 @default.
- W4309660897 hasConcept C192562407 @default.
- W4309660897 hasConcept C199360897 @default.
- W4309660897 hasConcept C204323151 @default.
- W4309660897 hasConcept C205649164 @default.
- W4309660897 hasConcept C39432304 @default.
- W4309660897 hasConcept C41008148 @default.
- W4309660897 hasConcept C559116025 @default.
- W4309660897 hasConcept C82685317 @default.
- W4309660897 hasConcept C91586092 @default.
- W4309660897 hasConceptScore W4309660897C100970517 @default.
- W4309660897 hasConceptScore W4309660897C126314574 @default.
- W4309660897 hasConceptScore W4309660897C127313418 @default.
- W4309660897 hasConceptScore W4309660897C153294291 @default.
- W4309660897 hasConceptScore W4309660897C159985019 @default.
- W4309660897 hasConceptScore W4309660897C164866538 @default.
- W4309660897 hasConceptScore W4309660897C178790620 @default.
- W4309660897 hasConceptScore W4309660897C185592680 @default.
- W4309660897 hasConceptScore W4309660897C192562407 @default.
- W4309660897 hasConceptScore W4309660897C199360897 @default.
- W4309660897 hasConceptScore W4309660897C204323151 @default.
- W4309660897 hasConceptScore W4309660897C205649164 @default.
- W4309660897 hasConceptScore W4309660897C39432304 @default.
- W4309660897 hasConceptScore W4309660897C41008148 @default.
- W4309660897 hasConceptScore W4309660897C559116025 @default.
- W4309660897 hasConceptScore W4309660897C82685317 @default.
- W4309660897 hasConceptScore W4309660897C91586092 @default.
- W4309660897 hasLocation W43096608971 @default.
- W4309660897 hasLocation W43096608972 @default.
- W4309660897 hasOpenAccess W4309660897 @default.