Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309672236> ?p ?o ?g. }
- W4309672236 endingPage "105611" @default.
- W4309672236 startingPage "105611" @default.
- W4309672236 abstract "Electricity is one of the most consumed commodities in the modern world. Electricity load prediction models are used to plan distribution operations to balance the equilibrium of demand and supply. This necessity has increased the number of recent research works. They employed several learning algorithms, such as support vector regression, to predict demands. However, these algorithms have high computational cost and too many user-defined parameters that directly impact their performance. Recently, randomization-based learning algorithms have been widely tested because they performed well at a lower cost. However, still, there was a main drawback: uncertainty in approximation and learning. This work employed a kernel trick to solve the uncertainty problem. A kernel with reservoir-state layers was used to solve the problem. The kernel reservoir-state layers from the echo state network not only transformed features into high-dimensional space, but also enhanced the forecasting ability by learning temporal information. Additionally, the proposed model also had a multi-step prediction ability that used previous forecasting errors to update the output weights in the current step to prevent an accumulated error problem. We compared our proposed model with single-layer and multi-layer variants of Extreme Learning Machine, Echo State Network, and Random Vector Functional Link on ten electrical load data sets. The proposed model showed the best performance on 9/10 data sets in terms of Mean Square Error or Symmetric Mean Absolute Percentage Error. These findings implied that the proposed algorithm was superior in forecasting long-term electricity load." @default.
- W4309672236 created "2022-11-29" @default.
- W4309672236 creator A5006643721 @default.
- W4309672236 creator A5029815659 @default.
- W4309672236 creator A5038939201 @default.
- W4309672236 creator A5050949041 @default.
- W4309672236 creator A5066462028 @default.
- W4309672236 creator A5086547689 @default.
- W4309672236 date "2023-01-01" @default.
- W4309672236 modified "2023-09-23" @default.
- W4309672236 title "Error-output recurrent multi-layer Kernel Reservoir Network for electricity load time series forecasting" @default.
- W4309672236 cites W1452938566 @default.
- W4309672236 cites W1980067289 @default.
- W4309672236 cites W1982870152 @default.
- W4309672236 cites W2012638612 @default.
- W4309672236 cites W2024805871 @default.
- W4309672236 cites W2138383519 @default.
- W4309672236 cites W2209764198 @default.
- W4309672236 cites W2229668941 @default.
- W4309672236 cites W2306386573 @default.
- W4309672236 cites W2346357836 @default.
- W4309672236 cites W2518287600 @default.
- W4309672236 cites W2561964848 @default.
- W4309672236 cites W2608997467 @default.
- W4309672236 cites W2727059890 @default.
- W4309672236 cites W2755364685 @default.
- W4309672236 cites W2787811863 @default.
- W4309672236 cites W2793187554 @default.
- W4309672236 cites W2795584780 @default.
- W4309672236 cites W2801821709 @default.
- W4309672236 cites W2802427349 @default.
- W4309672236 cites W2902854808 @default.
- W4309672236 cites W2911463394 @default.
- W4309672236 cites W2974181587 @default.
- W4309672236 cites W2981174158 @default.
- W4309672236 cites W3015976027 @default.
- W4309672236 cites W3022431777 @default.
- W4309672236 cites W3025185639 @default.
- W4309672236 cites W3048917786 @default.
- W4309672236 cites W3090070438 @default.
- W4309672236 cites W3094862101 @default.
- W4309672236 cites W3107178372 @default.
- W4309672236 cites W3133541856 @default.
- W4309672236 cites W3156969875 @default.
- W4309672236 cites W3158198533 @default.
- W4309672236 cites W3189064020 @default.
- W4309672236 cites W3189501841 @default.
- W4309672236 cites W3197396163 @default.
- W4309672236 cites W4239510810 @default.
- W4309672236 doi "https://doi.org/10.1016/j.engappai.2022.105611" @default.
- W4309672236 hasPublicationYear "2023" @default.
- W4309672236 type Work @default.
- W4309672236 citedByCount "1" @default.
- W4309672236 countsByYear W43096722362023 @default.
- W4309672236 crossrefType "journal-article" @default.
- W4309672236 hasAuthorship W4309672236A5006643721 @default.
- W4309672236 hasAuthorship W4309672236A5029815659 @default.
- W4309672236 hasAuthorship W4309672236A5038939201 @default.
- W4309672236 hasAuthorship W4309672236A5050949041 @default.
- W4309672236 hasAuthorship W4309672236A5066462028 @default.
- W4309672236 hasAuthorship W4309672236A5086547689 @default.
- W4309672236 hasConcept C11413529 @default.
- W4309672236 hasConcept C114614502 @default.
- W4309672236 hasConcept C115903097 @default.
- W4309672236 hasConcept C119599485 @default.
- W4309672236 hasConcept C119857082 @default.
- W4309672236 hasConcept C12267149 @default.
- W4309672236 hasConcept C126255220 @default.
- W4309672236 hasConcept C127413603 @default.
- W4309672236 hasConcept C135796866 @default.
- W4309672236 hasConcept C143724316 @default.
- W4309672236 hasConcept C147168706 @default.
- W4309672236 hasConcept C151406439 @default.
- W4309672236 hasConcept C151730666 @default.
- W4309672236 hasConcept C154945302 @default.
- W4309672236 hasConcept C206658404 @default.
- W4309672236 hasConcept C33923547 @default.
- W4309672236 hasConcept C41008148 @default.
- W4309672236 hasConcept C50644808 @default.
- W4309672236 hasConcept C74193536 @default.
- W4309672236 hasConcept C86803240 @default.
- W4309672236 hasConceptScore W4309672236C11413529 @default.
- W4309672236 hasConceptScore W4309672236C114614502 @default.
- W4309672236 hasConceptScore W4309672236C115903097 @default.
- W4309672236 hasConceptScore W4309672236C119599485 @default.
- W4309672236 hasConceptScore W4309672236C119857082 @default.
- W4309672236 hasConceptScore W4309672236C12267149 @default.
- W4309672236 hasConceptScore W4309672236C126255220 @default.
- W4309672236 hasConceptScore W4309672236C127413603 @default.
- W4309672236 hasConceptScore W4309672236C135796866 @default.
- W4309672236 hasConceptScore W4309672236C143724316 @default.
- W4309672236 hasConceptScore W4309672236C147168706 @default.
- W4309672236 hasConceptScore W4309672236C151406439 @default.
- W4309672236 hasConceptScore W4309672236C151730666 @default.
- W4309672236 hasConceptScore W4309672236C154945302 @default.
- W4309672236 hasConceptScore W4309672236C206658404 @default.
- W4309672236 hasConceptScore W4309672236C33923547 @default.
- W4309672236 hasConceptScore W4309672236C41008148 @default.