Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309673541> ?p ?o ?g. }
- W4309673541 abstract "Abstract With the development of full digitalization, the amount of time series data generated by sensors is ever-increasing; thus, time series outlier detection has become crucial. Moreover, in practice, discovering and flagging anomalies is very time-consuming and expensive. To solve this problem, unsupervised anomaly detection methods have often been used in the past, in which the model is trained with normal data to learn its behavioral patterns. Generative adversarial networks (GANs) can simulate complex and high-dimensional distributions of data and can be used to learn the behavioral patterns of normal data for unsupervised anomaly detection. However, because of the problem of convergence, GANs are difficult to train. Thus, USADs (an unsupervised anomaly detection model) utilize an autoencoder (AE) to undertake the task of the generator and discriminator and enhance the stability during adversarial training by using the AE to alleviate the problem of non-convergence encountered in GANs. Therefore, in this study, we used the USAD’s generative adversarial training architecture combined with convolutional AEs to improve the model’s feature extraction capabilities. In addition, to reduce false-positive outcomes caused by the prominent sharp points in the reconstructed data, we used the exponential weighted moving average method to smooth the reconstruction error, thereby improving the anomaly detection accuracy of the model. Finally, we experimented with real-world time-series data (ECG and 2D gesture) and verified that our approach could improve accuracy. Compared to the best in the comparison method, our model improved by 0.028% in AUROC, 0.233% in AUPRC, and 0.187% in F1 on average." @default.
- W4309673541 created "2022-11-29" @default.
- W4309673541 creator A5007073986 @default.
- W4309673541 creator A5036649990 @default.
- W4309673541 creator A5037623177 @default.
- W4309673541 creator A5084211634 @default.
- W4309673541 date "2022-11-22" @default.
- W4309673541 modified "2023-09-26" @default.
- W4309673541 title "Anomaly detection by using a combination of generative adversarial networks and convolutional autoencoders" @default.
- W4309673541 cites W2094882603 @default.
- W4309673541 cites W2127979711 @default.
- W4309673541 cites W2171771147 @default.
- W4309673541 cites W2371625969 @default.
- W4309673541 cites W2540481276 @default.
- W4309673541 cites W2599354622 @default.
- W4309673541 cites W2613221482 @default.
- W4309673541 cites W2743617586 @default.
- W4309673541 cites W2785409760 @default.
- W4309673541 cites W2799741169 @default.
- W4309673541 cites W2833324965 @default.
- W4309673541 cites W2884237723 @default.
- W4309673541 cites W2911200746 @default.
- W4309673541 cites W2962736999 @default.
- W4309673541 cites W2963045681 @default.
- W4309673541 cites W2965433388 @default.
- W4309673541 cites W2967973997 @default.
- W4309673541 cites W2970263181 @default.
- W4309673541 cites W3081497074 @default.
- W4309673541 cites W3098957257 @default.
- W4309673541 cites W3170937175 @default.
- W4309673541 cites W3175924508 @default.
- W4309673541 doi "https://doi.org/10.1186/s13634-022-00943-7" @default.
- W4309673541 hasPublicationYear "2022" @default.
- W4309673541 type Work @default.
- W4309673541 citedByCount "0" @default.
- W4309673541 crossrefType "journal-article" @default.
- W4309673541 hasAuthorship W4309673541A5007073986 @default.
- W4309673541 hasAuthorship W4309673541A5036649990 @default.
- W4309673541 hasAuthorship W4309673541A5037623177 @default.
- W4309673541 hasAuthorship W4309673541A5084211634 @default.
- W4309673541 hasBestOaLocation W43096735411 @default.
- W4309673541 hasConcept C101738243 @default.
- W4309673541 hasConcept C108583219 @default.
- W4309673541 hasConcept C112972136 @default.
- W4309673541 hasConcept C119857082 @default.
- W4309673541 hasConcept C121332964 @default.
- W4309673541 hasConcept C12997251 @default.
- W4309673541 hasConcept C153180895 @default.
- W4309673541 hasConcept C154945302 @default.
- W4309673541 hasConcept C163258240 @default.
- W4309673541 hasConcept C166957645 @default.
- W4309673541 hasConcept C26873012 @default.
- W4309673541 hasConcept C2777548347 @default.
- W4309673541 hasConcept C2779803651 @default.
- W4309673541 hasConcept C2780992000 @default.
- W4309673541 hasConcept C41008148 @default.
- W4309673541 hasConcept C62520636 @default.
- W4309673541 hasConcept C739882 @default.
- W4309673541 hasConcept C76155785 @default.
- W4309673541 hasConcept C79337645 @default.
- W4309673541 hasConcept C8038995 @default.
- W4309673541 hasConcept C81363708 @default.
- W4309673541 hasConcept C94915269 @default.
- W4309673541 hasConcept C95457728 @default.
- W4309673541 hasConceptScore W4309673541C101738243 @default.
- W4309673541 hasConceptScore W4309673541C108583219 @default.
- W4309673541 hasConceptScore W4309673541C112972136 @default.
- W4309673541 hasConceptScore W4309673541C119857082 @default.
- W4309673541 hasConceptScore W4309673541C121332964 @default.
- W4309673541 hasConceptScore W4309673541C12997251 @default.
- W4309673541 hasConceptScore W4309673541C153180895 @default.
- W4309673541 hasConceptScore W4309673541C154945302 @default.
- W4309673541 hasConceptScore W4309673541C163258240 @default.
- W4309673541 hasConceptScore W4309673541C166957645 @default.
- W4309673541 hasConceptScore W4309673541C26873012 @default.
- W4309673541 hasConceptScore W4309673541C2777548347 @default.
- W4309673541 hasConceptScore W4309673541C2779803651 @default.
- W4309673541 hasConceptScore W4309673541C2780992000 @default.
- W4309673541 hasConceptScore W4309673541C41008148 @default.
- W4309673541 hasConceptScore W4309673541C62520636 @default.
- W4309673541 hasConceptScore W4309673541C739882 @default.
- W4309673541 hasConceptScore W4309673541C76155785 @default.
- W4309673541 hasConceptScore W4309673541C79337645 @default.
- W4309673541 hasConceptScore W4309673541C8038995 @default.
- W4309673541 hasConceptScore W4309673541C81363708 @default.
- W4309673541 hasConceptScore W4309673541C94915269 @default.
- W4309673541 hasConceptScore W4309673541C95457728 @default.
- W4309673541 hasIssue "1" @default.
- W4309673541 hasLocation W43096735411 @default.
- W4309673541 hasLocation W43096735412 @default.
- W4309673541 hasLocation W43096735413 @default.
- W4309673541 hasOpenAccess W4309673541 @default.
- W4309673541 hasPrimaryLocation W43096735411 @default.
- W4309673541 hasRelatedWork W2964457614 @default.
- W4309673541 hasRelatedWork W3005222963 @default.
- W4309673541 hasRelatedWork W3094528781 @default.
- W4309673541 hasRelatedWork W3123344745 @default.
- W4309673541 hasRelatedWork W3185547778 @default.
- W4309673541 hasRelatedWork W3186512740 @default.
- W4309673541 hasRelatedWork W4285195761 @default.