Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309674002> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4309674002 endingPage "10" @default.
- W4309674002 startingPage "1" @default.
- W4309674002 abstract "Considering the potential risk of X-ray to patients, denoising of low-dose X-ray medical images is imperative. Inspired by deep learning, a convolutional autoencoder method for X-ray breast image denoising is proposed in this paper. First, image symmetry and flip are used to increase the number of images in the public dataset; second, the number of samples is increased further by image cropping segmentation, adding simulated noise, and producing the dataset. Finally, a convolutional autoencoder neural network model is constructed, and clean and noisy images are fed into it to complete the training. The results show that this method effectively removes noise while retaining image details in X-ray breast images, yielding higher peak signal-to-noise ratio and structural similarity index values than classical and novel denoising methods." @default.
- W4309674002 created "2022-11-29" @default.
- W4309674002 creator A5002038863 @default.
- W4309674002 creator A5038648872 @default.
- W4309674002 creator A5065704975 @default.
- W4309674002 creator A5091058610 @default.
- W4309674002 date "2022-11-22" @default.
- W4309674002 modified "2023-09-29" @default.
- W4309674002 title "X-Ray Breast Images Denoising Method Based on the Convolutional Autoencoder" @default.
- W4309674002 cites W1498436455 @default.
- W4309674002 cites W1973207880 @default.
- W4309674002 cites W2007203285 @default.
- W4309674002 cites W2056370875 @default.
- W4309674002 cites W2064076387 @default.
- W4309674002 cites W2113945798 @default.
- W4309674002 cites W2136655611 @default.
- W4309674002 cites W2163922914 @default.
- W4309674002 cites W2520016695 @default.
- W4309674002 cites W2536599074 @default.
- W4309674002 cites W2902290972 @default.
- W4309674002 cites W2949423562 @default.
- W4309674002 cites W2962976869 @default.
- W4309674002 cites W3014516197 @default.
- W4309674002 cites W3037582100 @default.
- W4309674002 cites W3080663289 @default.
- W4309674002 cites W3169893408 @default.
- W4309674002 cites W3169967744 @default.
- W4309674002 cites W3213236098 @default.
- W4309674002 cites W4213258551 @default.
- W4309674002 cites W4213308009 @default.
- W4309674002 cites W4226360436 @default.
- W4309674002 doi "https://doi.org/10.1155/2022/2362851" @default.
- W4309674002 hasPublicationYear "2022" @default.
- W4309674002 type Work @default.
- W4309674002 citedByCount "1" @default.
- W4309674002 countsByYear W43096740022023 @default.
- W4309674002 crossrefType "journal-article" @default.
- W4309674002 hasAuthorship W4309674002A5002038863 @default.
- W4309674002 hasAuthorship W4309674002A5038648872 @default.
- W4309674002 hasAuthorship W4309674002A5065704975 @default.
- W4309674002 hasAuthorship W4309674002A5091058610 @default.
- W4309674002 hasBestOaLocation W43096740021 @default.
- W4309674002 hasConcept C101738243 @default.
- W4309674002 hasConcept C103278499 @default.
- W4309674002 hasConcept C108583219 @default.
- W4309674002 hasConcept C115961682 @default.
- W4309674002 hasConcept C153180895 @default.
- W4309674002 hasConcept C154945302 @default.
- W4309674002 hasConcept C160633673 @default.
- W4309674002 hasConcept C163294075 @default.
- W4309674002 hasConcept C2983327147 @default.
- W4309674002 hasConcept C31972630 @default.
- W4309674002 hasConcept C41008148 @default.
- W4309674002 hasConcept C81363708 @default.
- W4309674002 hasConcept C99498987 @default.
- W4309674002 hasConceptScore W4309674002C101738243 @default.
- W4309674002 hasConceptScore W4309674002C103278499 @default.
- W4309674002 hasConceptScore W4309674002C108583219 @default.
- W4309674002 hasConceptScore W4309674002C115961682 @default.
- W4309674002 hasConceptScore W4309674002C153180895 @default.
- W4309674002 hasConceptScore W4309674002C154945302 @default.
- W4309674002 hasConceptScore W4309674002C160633673 @default.
- W4309674002 hasConceptScore W4309674002C163294075 @default.
- W4309674002 hasConceptScore W4309674002C2983327147 @default.
- W4309674002 hasConceptScore W4309674002C31972630 @default.
- W4309674002 hasConceptScore W4309674002C41008148 @default.
- W4309674002 hasConceptScore W4309674002C81363708 @default.
- W4309674002 hasConceptScore W4309674002C99498987 @default.
- W4309674002 hasFunder F4320323085 @default.
- W4309674002 hasLocation W43096740021 @default.
- W4309674002 hasOpenAccess W4309674002 @default.
- W4309674002 hasPrimaryLocation W43096740021 @default.
- W4309674002 hasRelatedWork W1495521283 @default.
- W4309674002 hasRelatedWork W2130580007 @default.
- W4309674002 hasRelatedWork W2483420468 @default.
- W4309674002 hasRelatedWork W2669956259 @default.
- W4309674002 hasRelatedWork W2728708755 @default.
- W4309674002 hasRelatedWork W2731899572 @default.
- W4309674002 hasRelatedWork W4224044423 @default.
- W4309674002 hasRelatedWork W4312417841 @default.
- W4309674002 hasRelatedWork W4321369474 @default.
- W4309674002 hasRelatedWork W2092619848 @default.
- W4309674002 hasVolume "2022" @default.
- W4309674002 isParatext "false" @default.
- W4309674002 isRetracted "false" @default.
- W4309674002 workType "article" @default.