Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309675323> ?p ?o ?g. }
- W4309675323 endingPage "M47" @default.
- W4309675323 startingPage "M31" @default.
- W4309675323 abstract "The essential task of reservoir characterization is to predict elastic/petrophysical parameters or facies from observed seismic data and evaluate their uncertainty. Deep learning-based methods gain great popularity because of their powerful ability to obtain exact solutions for geophysical inverse problems. However, those deep learning methods that use seismic data as the only input lead to difficult training and unstable inversion results (i.e., transverse discontinuity or geologic unreliability). In such circumstances, it is beneficial if prior knowledge of the model domain can be incorporated into the deep learning framework. Therefore, we have developed prior-based loss functions in the learning step of the deep learning models to ensure that the predictions find low errors on the training sets and that their results are consistent with the known prior. In addition, the Monte Carlo dropout (MC-dropout) technique is introduced for the quantitative assessment of the uncertainty of the prediction results. We determine the effectiveness of our framework in the application of prestack seismic inversion, in which the initial model built from well-log interpolation is used to design the prior-based loss function. We first perform extensive experiments on the synthetic data and find that our method can yield more stable and reliable results compared with traditional methods. Combined with the transfer learning strategy, the application to real data further demonstrates that our deep learning framework obtains more reasonable inversion results with more horizontal continuity and greater geologic reliability than traditional approaches." @default.
- W4309675323 created "2022-11-29" @default.
- W4309675323 creator A5019972279 @default.
- W4309675323 creator A5057209439 @default.
- W4309675323 creator A5070965744 @default.
- W4309675323 creator A5081765443 @default.
- W4309675323 date "2023-02-02" @default.
- W4309675323 modified "2023-10-17" @default.
- W4309675323 title "Domain knowledge-guided data-driven prestack seismic inversion using deep learning" @default.
- W4309675323 cites W1830302554 @default.
- W4309675323 cites W1995562189 @default.
- W4309675323 cites W2014918748 @default.
- W4309675323 cites W2021734622 @default.
- W4309675323 cites W2076063813 @default.
- W4309675323 cites W2082667383 @default.
- W4309675323 cites W2126798927 @default.
- W4309675323 cites W2160694358 @default.
- W4309675323 cites W2164375525 @default.
- W4309675323 cites W2165698076 @default.
- W4309675323 cites W2171680516 @default.
- W4309675323 cites W2518822842 @default.
- W4309675323 cites W2592051942 @default.
- W4309675323 cites W2734256217 @default.
- W4309675323 cites W2794868398 @default.
- W4309675323 cites W2800040198 @default.
- W4309675323 cites W2811145390 @default.
- W4309675323 cites W2886098498 @default.
- W4309675323 cites W2890209207 @default.
- W4309675323 cites W2902216690 @default.
- W4309675323 cites W2903721943 @default.
- W4309675323 cites W2906141267 @default.
- W4309675323 cites W2911424749 @default.
- W4309675323 cites W2915004230 @default.
- W4309675323 cites W2921227943 @default.
- W4309675323 cites W2947704004 @default.
- W4309675323 cites W2947856336 @default.
- W4309675323 cites W2954935640 @default.
- W4309675323 cites W2966618135 @default.
- W4309675323 cites W2968094316 @default.
- W4309675323 cites W2969839555 @default.
- W4309675323 cites W2979419929 @default.
- W4309675323 cites W2999581854 @default.
- W4309675323 cites W3000927853 @default.
- W4309675323 cites W3004936775 @default.
- W4309675323 cites W3005407459 @default.
- W4309675323 cites W3032032710 @default.
- W4309675323 cites W3032991056 @default.
- W4309675323 cites W3033655015 @default.
- W4309675323 cites W3088667723 @default.
- W4309675323 cites W3091672556 @default.
- W4309675323 cites W3091837928 @default.
- W4309675323 cites W3102431071 @default.
- W4309675323 cites W3116822623 @default.
- W4309675323 cites W3118322151 @default.
- W4309675323 cites W3123670553 @default.
- W4309675323 cites W3131639001 @default.
- W4309675323 cites W3134256030 @default.
- W4309675323 cites W3035067212 @default.
- W4309675323 doi "https://doi.org/10.1190/geo2021-0560.1" @default.
- W4309675323 hasPublicationYear "2023" @default.
- W4309675323 type Work @default.
- W4309675323 citedByCount "3" @default.
- W4309675323 countsByYear W43096753232023 @default.
- W4309675323 crossrefType "journal-article" @default.
- W4309675323 hasAuthorship W4309675323A5019972279 @default.
- W4309675323 hasAuthorship W4309675323A5057209439 @default.
- W4309675323 hasAuthorship W4309675323A5070965744 @default.
- W4309675323 hasAuthorship W4309675323A5081765443 @default.
- W4309675323 hasConcept C108583219 @default.
- W4309675323 hasConcept C11413529 @default.
- W4309675323 hasConcept C119857082 @default.
- W4309675323 hasConcept C127313418 @default.
- W4309675323 hasConcept C154945302 @default.
- W4309675323 hasConcept C160920958 @default.
- W4309675323 hasConcept C165205528 @default.
- W4309675323 hasConcept C187320778 @default.
- W4309675323 hasConcept C1893757 @default.
- W4309675323 hasConcept C41008148 @default.
- W4309675323 hasConcept C46293882 @default.
- W4309675323 hasConcept C6648577 @default.
- W4309675323 hasConcept C77928131 @default.
- W4309675323 hasConceptScore W4309675323C108583219 @default.
- W4309675323 hasConceptScore W4309675323C11413529 @default.
- W4309675323 hasConceptScore W4309675323C119857082 @default.
- W4309675323 hasConceptScore W4309675323C127313418 @default.
- W4309675323 hasConceptScore W4309675323C154945302 @default.
- W4309675323 hasConceptScore W4309675323C160920958 @default.
- W4309675323 hasConceptScore W4309675323C165205528 @default.
- W4309675323 hasConceptScore W4309675323C187320778 @default.
- W4309675323 hasConceptScore W4309675323C1893757 @default.
- W4309675323 hasConceptScore W4309675323C41008148 @default.
- W4309675323 hasConceptScore W4309675323C46293882 @default.
- W4309675323 hasConceptScore W4309675323C6648577 @default.
- W4309675323 hasConceptScore W4309675323C77928131 @default.
- W4309675323 hasFunder F4320321001 @default.
- W4309675323 hasIssue "2" @default.
- W4309675323 hasLocation W43096753231 @default.
- W4309675323 hasOpenAccess W4309675323 @default.