Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309675650> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4309675650 abstract "Over the past years, we have witnessed the extensive use of various software fault proneness prediction techniques utilizing machine learning. These techniques use data from multiple sources representing various facets of the software systems being investigated. In spite of the complexity and performance of all such techniques and approaches proposed by the research community, we cannot yet expertly reason on the features which may render a software system a good or bad candidate for their application. In this paper, we build on the corpus of established machine learning approaches, and we perform an evaluation of system-wide process metrics versus the results acquired by the indiscriminate application of a published best set of classifiers. More specifically, we analyze the fault proneness prediction results obtained by applying a combination of the best classifiers and file features to 207 open source projects in order to identify which project features make a system suitable for Machine Learning based fault proneness analysis or not. Based on this analysis, we propose a meta-evaluator of the overall nature of a system that can be used to gauge in advance the performance that can be expected when applying the selected technique in terms of the key performance measures namely: Accuracy, Fl-measure, Precision, Recall and ROC-AUC." @default.
- W4309675650 created "2022-11-29" @default.
- W4309675650 creator A5060736678 @default.
- W4309675650 creator A5081960809 @default.
- W4309675650 date "2022-10-01" @default.
- W4309675650 modified "2023-09-23" @default.
- W4309675650 title "Project Features That Make Machine-Learning Based Fault Proneness Analysis Successful" @default.
- W4309675650 cites W1975040830 @default.
- W4309675650 cites W1987855178 @default.
- W4309675650 cites W1995875735 @default.
- W4309675650 cites W2005504865 @default.
- W4309675650 cites W2008596407 @default.
- W4309675650 cites W2045116160 @default.
- W4309675650 cites W2046434103 @default.
- W4309675650 cites W2051978688 @default.
- W4309675650 cites W2063876764 @default.
- W4309675650 cites W2073649165 @default.
- W4309675650 cites W2080521990 @default.
- W4309675650 cites W2105300539 @default.
- W4309675650 cites W2118283821 @default.
- W4309675650 cites W2123279272 @default.
- W4309675650 cites W2132887549 @default.
- W4309675650 cites W2143189463 @default.
- W4309675650 cites W2150874999 @default.
- W4309675650 cites W2157353183 @default.
- W4309675650 cites W2158744032 @default.
- W4309675650 cites W2159610968 @default.
- W4309675650 cites W2163732854 @default.
- W4309675650 cites W2170207476 @default.
- W4309675650 cites W2783056558 @default.
- W4309675650 cites W2791527767 @default.
- W4309675650 cites W2795013017 @default.
- W4309675650 cites W2808113972 @default.
- W4309675650 cites W2903359694 @default.
- W4309675650 cites W2914582798 @default.
- W4309675650 cites W2963520355 @default.
- W4309675650 cites W2967780468 @default.
- W4309675650 cites W3080457607 @default.
- W4309675650 cites W3141989311 @default.
- W4309675650 cites W4206600618 @default.
- W4309675650 cites W4250023757 @default.
- W4309675650 doi "https://doi.org/10.1109/stc55697.2022.00018" @default.
- W4309675650 hasPublicationYear "2022" @default.
- W4309675650 type Work @default.
- W4309675650 citedByCount "0" @default.
- W4309675650 crossrefType "proceedings-article" @default.
- W4309675650 hasAuthorship W4309675650A5060736678 @default.
- W4309675650 hasAuthorship W4309675650A5081960809 @default.
- W4309675650 hasConcept C111919701 @default.
- W4309675650 hasConcept C119857082 @default.
- W4309675650 hasConcept C124101348 @default.
- W4309675650 hasConcept C127313418 @default.
- W4309675650 hasConcept C149091818 @default.
- W4309675650 hasConcept C154945302 @default.
- W4309675650 hasConcept C165205528 @default.
- W4309675650 hasConcept C175551986 @default.
- W4309675650 hasConcept C177264268 @default.
- W4309675650 hasConcept C199360897 @default.
- W4309675650 hasConcept C2777904410 @default.
- W4309675650 hasConcept C41008148 @default.
- W4309675650 hasConcept C81669768 @default.
- W4309675650 hasConcept C98045186 @default.
- W4309675650 hasConceptScore W4309675650C111919701 @default.
- W4309675650 hasConceptScore W4309675650C119857082 @default.
- W4309675650 hasConceptScore W4309675650C124101348 @default.
- W4309675650 hasConceptScore W4309675650C127313418 @default.
- W4309675650 hasConceptScore W4309675650C149091818 @default.
- W4309675650 hasConceptScore W4309675650C154945302 @default.
- W4309675650 hasConceptScore W4309675650C165205528 @default.
- W4309675650 hasConceptScore W4309675650C175551986 @default.
- W4309675650 hasConceptScore W4309675650C177264268 @default.
- W4309675650 hasConceptScore W4309675650C199360897 @default.
- W4309675650 hasConceptScore W4309675650C2777904410 @default.
- W4309675650 hasConceptScore W4309675650C41008148 @default.
- W4309675650 hasConceptScore W4309675650C81669768 @default.
- W4309675650 hasConceptScore W4309675650C98045186 @default.
- W4309675650 hasLocation W43096756501 @default.
- W4309675650 hasOpenAccess W4309675650 @default.
- W4309675650 hasPrimaryLocation W43096756501 @default.
- W4309675650 hasRelatedWork W172529684 @default.
- W4309675650 hasRelatedWork W2179540415 @default.
- W4309675650 hasRelatedWork W2185423563 @default.
- W4309675650 hasRelatedWork W2382767411 @default.
- W4309675650 hasRelatedWork W2779825365 @default.
- W4309675650 hasRelatedWork W3090406438 @default.
- W4309675650 hasRelatedWork W3158905084 @default.
- W4309675650 hasRelatedWork W4281617421 @default.
- W4309675650 hasRelatedWork W4309675650 @default.
- W4309675650 hasRelatedWork W4313444831 @default.
- W4309675650 isParatext "false" @default.
- W4309675650 isRetracted "false" @default.
- W4309675650 workType "article" @default.