Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309686855> ?p ?o ?g. }
- W4309686855 endingPage "811" @default.
- W4309686855 startingPage "811" @default.
- W4309686855 abstract "Peptide toxins generally have extreme pharmacological activities and provide a rich source for the discovery of drug leads. However, determining the optimal activity of a new peptide can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot; three positive-unlabeled (PU) learning schemes, adaptive basis classifier, two-step method, and PU bagging were adopted to develop models for predicting the biological function of new peptide toxins. All three schemes were embedded with 14 machine learning classifiers. The prediction results of the adaptive base classifier and the two-step method were highly consistent. The models with top comprehensive performances were further optimized by feature selection and hyperparameter tuning, and the models were validated by making predictions for 61 three-finger toxins or the external HemoPI dataset. Biological functions that can be identified by these models include cardiotoxicity, vasoactivity, lipid binding, hemolysis, neurotoxicity, postsynaptic neurotoxicity, hypotension, and cytolysis, with relatively weak predictions for hemostasis and presynaptic neurotoxicity. These models are discovery-prediction tools for active peptide toxins and are expected to accelerate the development of peptide toxins as drugs." @default.
- W4309686855 created "2022-11-29" @default.
- W4309686855 creator A5028489217 @default.
- W4309686855 creator A5067368375 @default.
- W4309686855 creator A5071798264 @default.
- W4309686855 date "2022-11-21" @default.
- W4309686855 modified "2023-09-25" @default.
- W4309686855 title "Function Prediction of Peptide Toxins with Sequence-Based Multi-Tasking PU Learning Method" @default.
- W4309686855 cites W1571377358 @default.
- W4309686855 cites W1978413677 @default.
- W4309686855 cites W1988790447 @default.
- W4309686855 cites W1989299599 @default.
- W4309686855 cites W1990075477 @default.
- W4309686855 cites W1995757481 @default.
- W4309686855 cites W2004813038 @default.
- W4309686855 cites W2016614106 @default.
- W4309686855 cites W2020818860 @default.
- W4309686855 cites W2033524239 @default.
- W4309686855 cites W2035074554 @default.
- W4309686855 cites W2040664100 @default.
- W4309686855 cites W2050871273 @default.
- W4309686855 cites W2092424786 @default.
- W4309686855 cites W2122111042 @default.
- W4309686855 cites W2123958887 @default.
- W4309686855 cites W2150028022 @default.
- W4309686855 cites W2150774183 @default.
- W4309686855 cites W2156557061 @default.
- W4309686855 cites W2160759749 @default.
- W4309686855 cites W2161246551 @default.
- W4309686855 cites W2330681997 @default.
- W4309686855 cites W2340970647 @default.
- W4309686855 cites W2409924309 @default.
- W4309686855 cites W2498119267 @default.
- W4309686855 cites W2513386338 @default.
- W4309686855 cites W2514206351 @default.
- W4309686855 cites W2588467130 @default.
- W4309686855 cites W2611281850 @default.
- W4309686855 cites W2734430678 @default.
- W4309686855 cites W2738276743 @default.
- W4309686855 cites W2751214316 @default.
- W4309686855 cites W2753588101 @default.
- W4309686855 cites W2757640349 @default.
- W4309686855 cites W2793009673 @default.
- W4309686855 cites W2794956775 @default.
- W4309686855 cites W2805310212 @default.
- W4309686855 cites W2911964244 @default.
- W4309686855 cites W2922131522 @default.
- W4309686855 cites W2943955331 @default.
- W4309686855 cites W2987391632 @default.
- W4309686855 cites W3007993713 @default.
- W4309686855 cites W3034854196 @default.
- W4309686855 cites W3091899249 @default.
- W4309686855 cites W3099252273 @default.
- W4309686855 cites W3102476541 @default.
- W4309686855 cites W3112376646 @default.
- W4309686855 cites W3168500404 @default.
- W4309686855 cites W320142507 @default.
- W4309686855 cites W3209094369 @default.
- W4309686855 cites W4210820117 @default.
- W4309686855 cites W4239510810 @default.
- W4309686855 cites W4281694339 @default.
- W4309686855 cites W6205547 @default.
- W4309686855 cites W623793480 @default.
- W4309686855 doi "https://doi.org/10.3390/toxins14110811" @default.
- W4309686855 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36422985" @default.
- W4309686855 hasPublicationYear "2022" @default.
- W4309686855 type Work @default.
- W4309686855 citedByCount "0" @default.
- W4309686855 crossrefType "journal-article" @default.
- W4309686855 hasAuthorship W4309686855A5028489217 @default.
- W4309686855 hasAuthorship W4309686855A5067368375 @default.
- W4309686855 hasAuthorship W4309686855A5071798264 @default.
- W4309686855 hasBestOaLocation W43096868551 @default.
- W4309686855 hasConcept C119857082 @default.
- W4309686855 hasConcept C127413603 @default.
- W4309686855 hasConcept C154945302 @default.
- W4309686855 hasConcept C178790620 @default.
- W4309686855 hasConcept C185592680 @default.
- W4309686855 hasConcept C2777615720 @default.
- W4309686855 hasConcept C2779281246 @default.
- W4309686855 hasConcept C2779491297 @default.
- W4309686855 hasConcept C29730261 @default.
- W4309686855 hasConcept C41008148 @default.
- W4309686855 hasConcept C539667460 @default.
- W4309686855 hasConcept C55493867 @default.
- W4309686855 hasConcept C70721500 @default.
- W4309686855 hasConcept C8642999 @default.
- W4309686855 hasConcept C86803240 @default.
- W4309686855 hasConcept C95623464 @default.
- W4309686855 hasConceptScore W4309686855C119857082 @default.
- W4309686855 hasConceptScore W4309686855C127413603 @default.
- W4309686855 hasConceptScore W4309686855C154945302 @default.
- W4309686855 hasConceptScore W4309686855C178790620 @default.
- W4309686855 hasConceptScore W4309686855C185592680 @default.
- W4309686855 hasConceptScore W4309686855C2777615720 @default.
- W4309686855 hasConceptScore W4309686855C2779281246 @default.
- W4309686855 hasConceptScore W4309686855C2779491297 @default.
- W4309686855 hasConceptScore W4309686855C29730261 @default.