Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309688775> ?p ?o ?g. }
- W4309688775 endingPage "15448" @default.
- W4309688775 startingPage "15448" @default.
- W4309688775 abstract "In the current era of e-mobility and for the planning of sustainable grid infrastructures, developing new efficient tools for real-time grid performance monitoring is essential. Thus, this paper presents the prediction of the voltage stability margin (VSM) of power systems by the critical boundary index (CBI) approach using the machine learning technique. Prediction models are based on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy ‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measuring the VSM of power systems under different loading conditions. Six vital power system parameters, including the transmission line and bus parameters, the power injection, and the system voltage derived from load flow analysis, are used as the ANFIS model implementation input. The performances of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated using error and regression analysis metrics. The performance metrics are the root mean square error (RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses. For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is 19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a superior performance for both test cases, as indicated by the percentage reduction in prediction error, although at the cost of a higher simulation time." @default.
- W4309688775 created "2022-11-29" @default.
- W4309688775 creator A5000103327 @default.
- W4309688775 creator A5069076972 @default.
- W4309688775 creator A5086764413 @default.
- W4309688775 creator A5088452486 @default.
- W4309688775 date "2022-11-21" @default.
- W4309688775 modified "2023-09-26" @default.
- W4309688775 title "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization" @default.
- W4309688775 cites W1572984097 @default.
- W4309688775 cites W1966399440 @default.
- W4309688775 cites W1968825592 @default.
- W4309688775 cites W2019207321 @default.
- W4309688775 cites W2025862896 @default.
- W4309688775 cites W2033918975 @default.
- W4309688775 cites W2054291132 @default.
- W4309688775 cites W2055623839 @default.
- W4309688775 cites W2065645571 @default.
- W4309688775 cites W2067786895 @default.
- W4309688775 cites W2070873251 @default.
- W4309688775 cites W2080853700 @default.
- W4309688775 cites W2085976969 @default.
- W4309688775 cites W2087356610 @default.
- W4309688775 cites W2137688796 @default.
- W4309688775 cites W2143270442 @default.
- W4309688775 cites W2162594536 @default.
- W4309688775 cites W2162987948 @default.
- W4309688775 cites W2168747298 @default.
- W4309688775 cites W2171416061 @default.
- W4309688775 cites W2180530878 @default.
- W4309688775 cites W2224627999 @default.
- W4309688775 cites W2237654220 @default.
- W4309688775 cites W2506979122 @default.
- W4309688775 cites W2555950364 @default.
- W4309688775 cites W2566970311 @default.
- W4309688775 cites W2618989592 @default.
- W4309688775 cites W2766134422 @default.
- W4309688775 cites W2766485183 @default.
- W4309688775 cites W2782698069 @default.
- W4309688775 cites W2785850679 @default.
- W4309688775 cites W2793691151 @default.
- W4309688775 cites W2899962178 @default.
- W4309688775 cites W2910096146 @default.
- W4309688775 cites W2913272751 @default.
- W4309688775 cites W29240219 @default.
- W4309688775 cites W2973677561 @default.
- W4309688775 cites W3000279472 @default.
- W4309688775 cites W3001597025 @default.
- W4309688775 cites W3006553350 @default.
- W4309688775 cites W3007802341 @default.
- W4309688775 cites W3035033243 @default.
- W4309688775 cites W3093968407 @default.
- W4309688775 cites W3095417967 @default.
- W4309688775 cites W3111415822 @default.
- W4309688775 cites W3124740494 @default.
- W4309688775 cites W3127257929 @default.
- W4309688775 cites W3128404591 @default.
- W4309688775 cites W3129175333 @default.
- W4309688775 cites W3132386319 @default.
- W4309688775 cites W3159219703 @default.
- W4309688775 cites W3210232527 @default.
- W4309688775 cites W3215682926 @default.
- W4309688775 cites W334214521 @default.
- W4309688775 cites W41778407 @default.
- W4309688775 cites W4200533996 @default.
- W4309688775 cites W4280495626 @default.
- W4309688775 cites W4281569709 @default.
- W4309688775 doi "https://doi.org/10.3390/su142215448" @default.
- W4309688775 hasPublicationYear "2022" @default.
- W4309688775 type Work @default.
- W4309688775 citedByCount "0" @default.
- W4309688775 crossrefType "journal-article" @default.
- W4309688775 hasAuthorship W4309688775A5000103327 @default.
- W4309688775 hasAuthorship W4309688775A5069076972 @default.
- W4309688775 hasAuthorship W4309688775A5086764413 @default.
- W4309688775 hasAuthorship W4309688775A5088452486 @default.
- W4309688775 hasBestOaLocation W43096887751 @default.
- W4309688775 hasConcept C105795698 @default.
- W4309688775 hasConcept C119857082 @default.
- W4309688775 hasConcept C121332964 @default.
- W4309688775 hasConcept C139945424 @default.
- W4309688775 hasConcept C150217764 @default.
- W4309688775 hasConcept C154945302 @default.
- W4309688775 hasConcept C163258240 @default.
- W4309688775 hasConcept C186108316 @default.
- W4309688775 hasConcept C195975749 @default.
- W4309688775 hasConcept C2775924081 @default.
- W4309688775 hasConcept C29470771 @default.
- W4309688775 hasConcept C33923547 @default.
- W4309688775 hasConcept C41008148 @default.
- W4309688775 hasConcept C47446073 @default.
- W4309688775 hasConcept C58166 @default.
- W4309688775 hasConcept C62520636 @default.
- W4309688775 hasConcept C85617194 @default.
- W4309688775 hasConcept C89227174 @default.
- W4309688775 hasConceptScore W4309688775C105795698 @default.
- W4309688775 hasConceptScore W4309688775C119857082 @default.
- W4309688775 hasConceptScore W4309688775C121332964 @default.