Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309690803> ?p ?o ?g. }
- W4309690803 endingPage "21" @default.
- W4309690803 startingPage "1" @default.
- W4309690803 abstract "The complex etiological variables and high heterogeneity of bladder cancer (BC) make prognostic prediction challenging. We aimed to develop a robust and promising gene signature using advanced machine learning methods for predicting the prognosis and therapy responses of BC patients.The single-sample gene set enrichment analysis (ssGSEA) algorithm and univariable Cox regression were used to identify the primary risk hallmark among the various cancer hallmarks. Machine learning methods were then combined with survival and differential gene expression analyses to construct a novel prognostic signature, which would be validated in two additional independent cohorts. Moreover, relationships between this signature and therapy responses were also identified. Functional enrichment analysis and immune cell estimation were also conducted to provide insights into the potential mechanisms of BC.Epithelial-mesenchymal transition (EMT) was identified as the primary risk factor for the survival of BC patients (HR=1.43, 95% CI: 1.26-1.63). A novel EMT-related gene signature was constructed and validated in three independent cohorts, showing stable and accurate performance in predicting clinical outcomes. Furthermore, high-risk patients had poor prognoses and multivariable Cox regression analysis revealed this to be an independent risk factor for patient survival. CD8+ T cells, Tregs, and M2 macrophages were found abundantly in the tumor microenvironment of high-risk patients. Moreover, it was anticipated that high-risk patients would be more sensitive to chemotherapeutic drugs, while low-risk patients would benefit more from immunotherapy.We successfully identified and validated a novel EMT-related gene signature for predicting clinical outcomes and therapy responses in BC patients, which may be useful in clinical practice for risk stratification and individualized treatment." @default.
- W4309690803 created "2022-11-29" @default.
- W4309690803 creator A5003026237 @default.
- W4309690803 creator A5038303779 @default.
- W4309690803 creator A5075619954 @default.
- W4309690803 date "2022-11-22" @default.
- W4309690803 modified "2023-10-14" @default.
- W4309690803 title "Characterization of Epithelial-Mesenchymal Transition Identifies a Gene Signature for Predicting Clinical Outcomes and Therapeutic Responses in Bladder Cancer" @default.
- W4309690803 cites W1705518899 @default.
- W4309690803 cites W1985629328 @default.
- W4309690803 cites W1985987855 @default.
- W4309690803 cites W1996863944 @default.
- W4309690803 cites W2010457001 @default.
- W4309690803 cites W2019408938 @default.
- W4309690803 cites W2025647419 @default.
- W4309690803 cites W2032942532 @default.
- W4309690803 cites W2035618305 @default.
- W4309690803 cites W2072710221 @default.
- W4309690803 cites W2078134150 @default.
- W4309690803 cites W2093773243 @default.
- W4309690803 cites W2108068107 @default.
- W4309690803 cites W2117490187 @default.
- W4309690803 cites W2130261635 @default.
- W4309690803 cites W2130410032 @default.
- W4309690803 cites W2130430382 @default.
- W4309690803 cites W2146512944 @default.
- W4309690803 cites W2156164249 @default.
- W4309690803 cites W2156662494 @default.
- W4309690803 cites W2171597083 @default.
- W4309690803 cites W2301685087 @default.
- W4309690803 cites W2315201381 @default.
- W4309690803 cites W2419439766 @default.
- W4309690803 cites W2462649057 @default.
- W4309690803 cites W2597632520 @default.
- W4309690803 cites W2757235462 @default.
- W4309690803 cites W2777192533 @default.
- W4309690803 cites W2794165001 @default.
- W4309690803 cites W2888172308 @default.
- W4309690803 cites W2904713531 @default.
- W4309690803 cites W2943005115 @default.
- W4309690803 cites W2943108118 @default.
- W4309690803 cites W2964353616 @default.
- W4309690803 cites W2971378659 @default.
- W4309690803 cites W2981742231 @default.
- W4309690803 cites W3016840787 @default.
- W4309690803 cites W3087262725 @default.
- W4309690803 cites W3118501133 @default.
- W4309690803 cites W3128646645 @default.
- W4309690803 cites W3175404278 @default.
- W4309690803 cites W3182293965 @default.
- W4309690803 cites W3205181756 @default.
- W4309690803 cites W4250731522 @default.
- W4309690803 doi "https://doi.org/10.1155/2022/9593039" @default.
- W4309690803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36457546" @default.
- W4309690803 hasPublicationYear "2022" @default.
- W4309690803 type Work @default.
- W4309690803 citedByCount "1" @default.
- W4309690803 countsByYear W43096908032023 @default.
- W4309690803 crossrefType "journal-article" @default.
- W4309690803 hasAuthorship W4309690803A5003026237 @default.
- W4309690803 hasAuthorship W4309690803A5038303779 @default.
- W4309690803 hasAuthorship W4309690803A5075619954 @default.
- W4309690803 hasBestOaLocation W43096908031 @default.
- W4309690803 hasConcept C104317684 @default.
- W4309690803 hasConcept C121608353 @default.
- W4309690803 hasConcept C126322002 @default.
- W4309690803 hasConcept C143998085 @default.
- W4309690803 hasConcept C150194340 @default.
- W4309690803 hasConcept C2777701055 @default.
- W4309690803 hasConcept C2779013556 @default.
- W4309690803 hasConcept C2779733811 @default.
- W4309690803 hasConcept C2780352672 @default.
- W4309690803 hasConcept C50382708 @default.
- W4309690803 hasConcept C55493867 @default.
- W4309690803 hasConcept C60644358 @default.
- W4309690803 hasConcept C71924100 @default.
- W4309690803 hasConcept C76419328 @default.
- W4309690803 hasConcept C86803240 @default.
- W4309690803 hasConceptScore W4309690803C104317684 @default.
- W4309690803 hasConceptScore W4309690803C121608353 @default.
- W4309690803 hasConceptScore W4309690803C126322002 @default.
- W4309690803 hasConceptScore W4309690803C143998085 @default.
- W4309690803 hasConceptScore W4309690803C150194340 @default.
- W4309690803 hasConceptScore W4309690803C2777701055 @default.
- W4309690803 hasConceptScore W4309690803C2779013556 @default.
- W4309690803 hasConceptScore W4309690803C2779733811 @default.
- W4309690803 hasConceptScore W4309690803C2780352672 @default.
- W4309690803 hasConceptScore W4309690803C50382708 @default.
- W4309690803 hasConceptScore W4309690803C55493867 @default.
- W4309690803 hasConceptScore W4309690803C60644358 @default.
- W4309690803 hasConceptScore W4309690803C71924100 @default.
- W4309690803 hasConceptScore W4309690803C76419328 @default.
- W4309690803 hasConceptScore W4309690803C86803240 @default.
- W4309690803 hasLocation W43096908031 @default.
- W4309690803 hasLocation W43096908032 @default.
- W4309690803 hasLocation W43096908033 @default.
- W4309690803 hasOpenAccess W4309690803 @default.
- W4309690803 hasPrimaryLocation W43096908031 @default.