Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309709747> ?p ?o ?g. }
- W4309709747 endingPage "109949" @default.
- W4309709747 startingPage "109949" @default.
- W4309709747 abstract "This paper leverages each pixel of a picture acquired from a video camera, in which structural dynamic information is contained, in order to decompose spatiotemporal information from such a non-contact virtual sensor array in the same way as traditional accelerometers to extract structural modal frequencies. Attention-based deep neural network architecture is proposed in this work to better visualize the dynamic properties of structures in the existence of noise with a high resolution. The work combines CNNs and Recurrent Neural Networks (RNNs) to predict modal frequencies of structures from a series of consecutive images. High discriminative features of video frames are firstly extracted using the CNN, and then Conv-Long Short-Term Memory (ConvLSTM) is applied to further process the extracted features to capture the temporal dynamics in videos. The attention mechanisms are embedded in the network to ensure the model learns to focus selectively on those frames containing system dynamics. In particular, the proposed computer vision-based deep learning model takes the video of a vibrating structure as the input and successfully estimates the modal frequencies. Transfer learning is applied to cohere the knowledge learned from publicly available datasets to a much more sophisticated structure and estimate the resonant frequencies. The proposed algorithm optimizes the filter design for video processing in a fully automated way without any human intervention and can generalize and transfer that learned information to more complex structures. The model is trained using publicly available generic baseline data (Dataset A) consisting of several simple beam structures with different material properties and sizes and transferred the learned knowledge to unseen data (Dataset B) consisting of an independent turbine blade. It is concluded that the newly proposed method is more autonomous, accurate, and capable of generalizing the model to a new independent dataset using a transfer learning strategy, and the most advantage of the proposed approach is that the trained deep learning architecture has the capability of estimating the resonant frequencies for independent structures and extending the resonant frequency estimations to higher modes." @default.
- W4309709747 created "2022-11-29" @default.
- W4309709747 creator A5025557730 @default.
- W4309709747 creator A5029030150 @default.
- W4309709747 creator A5085908232 @default.
- W4309709747 date "2023-03-01" @default.
- W4309709747 modified "2023-10-18" @default.
- W4309709747 title "A hybrid-attention-ConvLSTM-based deep learning architecture to extract modal frequencies from limited data using transfer learning" @default.
- W4309709747 cites W1482248893 @default.
- W4309709747 cites W1966056118 @default.
- W4309709747 cites W1972372596 @default.
- W4309709747 cites W1983845921 @default.
- W4309709747 cites W1990370049 @default.
- W4309709747 cites W1996440783 @default.
- W4309709747 cites W2002111044 @default.
- W4309709747 cites W2002646389 @default.
- W4309709747 cites W2007030286 @default.
- W4309709747 cites W2009708399 @default.
- W4309709747 cites W2010113916 @default.
- W4309709747 cites W2020624027 @default.
- W4309709747 cites W2024379359 @default.
- W4309709747 cites W2027309188 @default.
- W4309709747 cites W2041464047 @default.
- W4309709747 cites W2054190518 @default.
- W4309709747 cites W2060870893 @default.
- W4309709747 cites W2062439570 @default.
- W4309709747 cites W2064051473 @default.
- W4309709747 cites W2082860461 @default.
- W4309709747 cites W2103289165 @default.
- W4309709747 cites W2169534075 @default.
- W4309709747 cites W2316979147 @default.
- W4309709747 cites W2345010043 @default.
- W4309709747 cites W2560355770 @default.
- W4309709747 cites W2573587735 @default.
- W4309709747 cites W2604321178 @default.
- W4309709747 cites W2733461252 @default.
- W4309709747 cites W2794286598 @default.
- W4309709747 cites W2808349319 @default.
- W4309709747 cites W2886898264 @default.
- W4309709747 cites W2893202042 @default.
- W4309709747 cites W2936800959 @default.
- W4309709747 cites W2944851425 @default.
- W4309709747 cites W2945895189 @default.
- W4309709747 cites W2966239777 @default.
- W4309709747 cites W2996017270 @default.
- W4309709747 cites W3004285834 @default.
- W4309709747 cites W3015490249 @default.
- W4309709747 cites W3019295470 @default.
- W4309709747 cites W3115386140 @default.
- W4309709747 cites W3171471609 @default.
- W4309709747 cites W3192731655 @default.
- W4309709747 cites W3197546474 @default.
- W4309709747 cites W352852420 @default.
- W4309709747 cites W4235013356 @default.
- W4309709747 cites W4252262371 @default.
- W4309709747 cites W4376596282 @default.
- W4309709747 doi "https://doi.org/10.1016/j.ymssp.2022.109949" @default.
- W4309709747 hasPublicationYear "2023" @default.
- W4309709747 type Work @default.
- W4309709747 citedByCount "2" @default.
- W4309709747 countsByYear W43097097472023 @default.
- W4309709747 crossrefType "journal-article" @default.
- W4309709747 hasAuthorship W4309709747A5025557730 @default.
- W4309709747 hasAuthorship W4309709747A5029030150 @default.
- W4309709747 hasAuthorship W4309709747A5085908232 @default.
- W4309709747 hasConcept C106131492 @default.
- W4309709747 hasConcept C108583219 @default.
- W4309709747 hasConcept C111919701 @default.
- W4309709747 hasConcept C119857082 @default.
- W4309709747 hasConcept C120665830 @default.
- W4309709747 hasConcept C121332964 @default.
- W4309709747 hasConcept C126042441 @default.
- W4309709747 hasConcept C147168706 @default.
- W4309709747 hasConcept C150899416 @default.
- W4309709747 hasConcept C153180895 @default.
- W4309709747 hasConcept C154945302 @default.
- W4309709747 hasConcept C185592680 @default.
- W4309709747 hasConcept C188027245 @default.
- W4309709747 hasConcept C192209626 @default.
- W4309709747 hasConcept C31972630 @default.
- W4309709747 hasConcept C41008148 @default.
- W4309709747 hasConcept C50644808 @default.
- W4309709747 hasConcept C71139939 @default.
- W4309709747 hasConcept C76155785 @default.
- W4309709747 hasConcept C97931131 @default.
- W4309709747 hasConcept C98045186 @default.
- W4309709747 hasConceptScore W4309709747C106131492 @default.
- W4309709747 hasConceptScore W4309709747C108583219 @default.
- W4309709747 hasConceptScore W4309709747C111919701 @default.
- W4309709747 hasConceptScore W4309709747C119857082 @default.
- W4309709747 hasConceptScore W4309709747C120665830 @default.
- W4309709747 hasConceptScore W4309709747C121332964 @default.
- W4309709747 hasConceptScore W4309709747C126042441 @default.
- W4309709747 hasConceptScore W4309709747C147168706 @default.
- W4309709747 hasConceptScore W4309709747C150899416 @default.
- W4309709747 hasConceptScore W4309709747C153180895 @default.
- W4309709747 hasConceptScore W4309709747C154945302 @default.
- W4309709747 hasConceptScore W4309709747C185592680 @default.