Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309717449> ?p ?o ?g. }
- W4309717449 endingPage "5837" @default.
- W4309717449 startingPage "5837" @default.
- W4309717449 abstract "Global warming has made the Arctic increasingly available for marine operations and created a demand for reliable operational sea ice forecasts to increase safety. Because ocean-ice numerical models are highly computationally intensive, relatively lightweight ML-based methods may be more efficient for sea ice forecasting. Many studies have exploited different deep learning models alongside classical approaches for predicting sea ice concentration in the Arctic. However, only a few focus on daily operational forecasts and consider the real-time availability of data needed for marine operations. In this article, we aim to close this gap and investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days. We show that this deep learning model can outperform simple baselines by a significant margin, and we can improve the model’s quality by using additional weather data and training on multiple regions to ensure its generalization abilities. As a practical outcome, we build a fast and flexible tool that produces operational sea ice forecasts in the Barents Sea, the Labrador Sea, and the Laptev Sea regions." @default.
- W4309717449 created "2022-11-29" @default.
- W4309717449 creator A5001714982 @default.
- W4309717449 creator A5015033130 @default.
- W4309717449 creator A5015444522 @default.
- W4309717449 creator A5019809176 @default.
- W4309717449 creator A5023657326 @default.
- W4309717449 creator A5026027027 @default.
- W4309717449 creator A5048095728 @default.
- W4309717449 creator A5064965183 @default.
- W4309717449 creator A5078202755 @default.
- W4309717449 creator A5086058139 @default.
- W4309717449 creator A5087352318 @default.
- W4309717449 creator A5088950452 @default.
- W4309717449 date "2022-11-17" @default.
- W4309717449 modified "2023-09-27" @default.
- W4309717449 title "Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting" @default.
- W4309717449 cites W1875502629 @default.
- W4309717449 cites W1901129140 @default.
- W4309717449 cites W1931115338 @default.
- W4309717449 cites W1994876543 @default.
- W4309717449 cites W2002312361 @default.
- W4309717449 cites W2002317889 @default.
- W4309717449 cites W2047646918 @default.
- W4309717449 cites W2055484760 @default.
- W4309717449 cites W2064675550 @default.
- W4309717449 cites W2069143585 @default.
- W4309717449 cites W2077200936 @default.
- W4309717449 cites W2112796928 @default.
- W4309717449 cites W2147800946 @default.
- W4309717449 cites W2152795782 @default.
- W4309717449 cites W2155069722 @default.
- W4309717449 cites W2157331557 @default.
- W4309717449 cites W2194775991 @default.
- W4309717449 cites W2296073425 @default.
- W4309717449 cites W2297508164 @default.
- W4309717449 cites W2342323825 @default.
- W4309717449 cites W2571024900 @default.
- W4309717449 cites W2608569001 @default.
- W4309717449 cites W2775070522 @default.
- W4309717449 cites W2793467448 @default.
- W4309717449 cites W2804729487 @default.
- W4309717449 cites W2897516365 @default.
- W4309717449 cites W2898036457 @default.
- W4309717449 cites W2906390219 @default.
- W4309717449 cites W2944124417 @default.
- W4309717449 cites W2950639920 @default.
- W4309717449 cites W2954996726 @default.
- W4309717449 cites W2965187616 @default.
- W4309717449 cites W3008386195 @default.
- W4309717449 cites W3021288641 @default.
- W4309717449 cites W3034441913 @default.
- W4309717449 cites W3088315202 @default.
- W4309717449 cites W3092731621 @default.
- W4309717449 cites W3092926649 @default.
- W4309717449 cites W3106932526 @default.
- W4309717449 cites W3127723844 @default.
- W4309717449 cites W3138340468 @default.
- W4309717449 cites W3139464355 @default.
- W4309717449 cites W3147760105 @default.
- W4309717449 cites W3155654404 @default.
- W4309717449 cites W3200747617 @default.
- W4309717449 cites W3204602673 @default.
- W4309717449 cites W4220961471 @default.
- W4309717449 cites W4221001881 @default.
- W4309717449 cites W4223558943 @default.
- W4309717449 cites W4229445738 @default.
- W4309717449 cites W4238294127 @default.
- W4309717449 doi "https://doi.org/10.3390/rs14225837" @default.
- W4309717449 hasPublicationYear "2022" @default.
- W4309717449 type Work @default.
- W4309717449 citedByCount "2" @default.
- W4309717449 countsByYear W43097174492022 @default.
- W4309717449 countsByYear W43097174492023 @default.
- W4309717449 crossrefType "journal-article" @default.
- W4309717449 hasAuthorship W4309717449A5001714982 @default.
- W4309717449 hasAuthorship W4309717449A5015033130 @default.
- W4309717449 hasAuthorship W4309717449A5015444522 @default.
- W4309717449 hasAuthorship W4309717449A5019809176 @default.
- W4309717449 hasAuthorship W4309717449A5023657326 @default.
- W4309717449 hasAuthorship W4309717449A5026027027 @default.
- W4309717449 hasAuthorship W4309717449A5048095728 @default.
- W4309717449 hasAuthorship W4309717449A5064965183 @default.
- W4309717449 hasAuthorship W4309717449A5078202755 @default.
- W4309717449 hasAuthorship W4309717449A5086058139 @default.
- W4309717449 hasAuthorship W4309717449A5087352318 @default.
- W4309717449 hasAuthorship W4309717449A5088950452 @default.
- W4309717449 hasBestOaLocation W43097174491 @default.
- W4309717449 hasConcept C111368507 @default.
- W4309717449 hasConcept C127313418 @default.
- W4309717449 hasConcept C136894858 @default.
- W4309717449 hasConcept C153294291 @default.
- W4309717449 hasConcept C161798024 @default.
- W4309717449 hasConcept C205649164 @default.
- W4309717449 hasConcept C3018378255 @default.
- W4309717449 hasConcept C39432304 @default.
- W4309717449 hasConcept C41008148 @default.
- W4309717449 hasConcept C49204034 @default.