Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309726515> ?p ?o ?g. }
- W4309726515 endingPage "595" @default.
- W4309726515 startingPage "584" @default.
- W4309726515 abstract "•HCC risk stratification will ultimately enable refinement of surveillance strategies in patients with cirrhosis. •Universal scoring systems based on routine parameters may currently be applied regardless of the cause of liver disease. •Seven genetic variants can be combined into a genetic risk score for HCC in patients in surveillance programs. •The addition of this genetic information to clinical scoring systems modestly improves their performance for risk stratification. Background & Aims Identifying individuals at higher risk of developing hepatocellular carcinoma (HCC) is pivotal to improve the performance of surveillance strategies. Herein, we aimed to evaluate the ability of single nucleotide polymorphisms (SNPs) to refine HCC risk stratification. Methods Six SNPs in PNPLA3, TM6SF2, HSD17B13, APOE, and MBOAT7 affecting lipid turnover and one variant involved in the Wnt–β-catenin pathway (WNT3A-WNT9A rs708113) were assessed in patients with alcohol-related and/or HCV-cured cirrhosis included in HCC surveillance programmes (prospective CirVir and CIRRAL cohorts). Their prognostic value for HCC occurrence was assessed using Fine-Gray models combined into a 7-SNP genetic risk score (GRS). The predictive ability of two clinical scores (a routine non-genetic model determined by multivariate analysis and the external aMAP score) with/without the GRS was evaluated by C-indices. The standardised net benefit was derived from decision curves. Results Among 1,145 patients, 86 (7.5%) developed HCC after 43.7 months. PNPLA3 and WNT3A-WNT9A variants were independently associated with HCC occurrence. The GRS stratified the population into three groups with progressively increased 5-year HCC incidence (Group 1 [n = 627, 5.4%], Group 2 [n = 276, 10.7%], and Group 3 [n = 242, 15.3%]; p <0.001). The multivariate model identified age, male sex, diabetes, platelet count, gamma-glutamyltransferase levels, albuminemia and the GRS as independent risk factors. The clinical model performance for 5-year HCC prediction was similar to that of the aMAP score (C-Index 0.769). The addition of the GRS to both scores modestly improved their performance (C-Indices of 0.786 and 0.783, respectively). This finding was confirmed by decision curve analyses showing only fair clinical net benefit. Conclusions Patients with cirrhosis can be stratified into HCC risk classes by variants affecting lipid turnover and the Wnt–β-catenin pathway. The incorporation of this genetic information modestly improves the performance of clinical scores. Impact and implications The identification of patients at higher risk of developing liver cancer is pivotal to improve the performance of surveillance. Risk assessment can be achieved by combining several clinical and biological parameters used in routine practice. The addition of patients’ genetic characteristics can modestly improve this prediction and will ultimately pave the way for precision medicine in patients eligible for HCC surveillance, allowing physicians to trigger personalised screening strategies. Identifying individuals at higher risk of developing hepatocellular carcinoma (HCC) is pivotal to improve the performance of surveillance strategies. Herein, we aimed to evaluate the ability of single nucleotide polymorphisms (SNPs) to refine HCC risk stratification. Six SNPs in PNPLA3, TM6SF2, HSD17B13, APOE, and MBOAT7 affecting lipid turnover and one variant involved in the Wnt–β-catenin pathway (WNT3A-WNT9A rs708113) were assessed in patients with alcohol-related and/or HCV-cured cirrhosis included in HCC surveillance programmes (prospective CirVir and CIRRAL cohorts). Their prognostic value for HCC occurrence was assessed using Fine-Gray models combined into a 7-SNP genetic risk score (GRS). The predictive ability of two clinical scores (a routine non-genetic model determined by multivariate analysis and the external aMAP score) with/without the GRS was evaluated by C-indices. The standardised net benefit was derived from decision curves. Among 1,145 patients, 86 (7.5%) developed HCC after 43.7 months. PNPLA3 and WNT3A-WNT9A variants were independently associated with HCC occurrence. The GRS stratified the population into three groups with progressively increased 5-year HCC incidence (Group 1 [n = 627, 5.4%], Group 2 [n = 276, 10.7%], and Group 3 [n = 242, 15.3%]; p <0.001). The multivariate model identified age, male sex, diabetes, platelet count, gamma-glutamyltransferase levels, albuminemia and the GRS as independent risk factors. The clinical model performance for 5-year HCC prediction was similar to that of the aMAP score (C-Index 0.769). The addition of the GRS to both scores modestly improved their performance (C-Indices of 0.786 and 0.783, respectively). This finding was confirmed by decision curve analyses showing only fair clinical net benefit. Patients with cirrhosis can be stratified into HCC risk classes by variants affecting lipid turnover and the Wnt–β-catenin pathway. The incorporation of this genetic information modestly improves the performance of clinical scores." @default.
- W4309726515 created "2022-11-29" @default.
- W4309726515 creator A5003479866 @default.
- W4309726515 creator A5003944446 @default.
- W4309726515 creator A5004064806 @default.
- W4309726515 creator A5004190706 @default.
- W4309726515 creator A5004361418 @default.
- W4309726515 creator A5006482608 @default.
- W4309726515 creator A5009032052 @default.
- W4309726515 creator A5012365183 @default.
- W4309726515 creator A5014621165 @default.
- W4309726515 creator A5015975130 @default.
- W4309726515 creator A5018477126 @default.
- W4309726515 creator A5019949529 @default.
- W4309726515 creator A5021584250 @default.
- W4309726515 creator A5022447635 @default.
- W4309726515 creator A5024858582 @default.
- W4309726515 creator A5025136722 @default.
- W4309726515 creator A5028754326 @default.
- W4309726515 creator A5033590515 @default.
- W4309726515 creator A5034858752 @default.
- W4309726515 creator A5035641438 @default.
- W4309726515 creator A5039684397 @default.
- W4309726515 creator A5041031293 @default.
- W4309726515 creator A5045683764 @default.
- W4309726515 creator A5046293478 @default.
- W4309726515 creator A5047468439 @default.
- W4309726515 creator A5048196058 @default.
- W4309726515 creator A5048237873 @default.
- W4309726515 creator A5048389089 @default.
- W4309726515 creator A5051340467 @default.
- W4309726515 creator A5052064056 @default.
- W4309726515 creator A5052228528 @default.
- W4309726515 creator A5052673276 @default.
- W4309726515 creator A5052751203 @default.
- W4309726515 creator A5053434760 @default.
- W4309726515 creator A5056350482 @default.
- W4309726515 creator A5056607327 @default.
- W4309726515 creator A5056741055 @default.
- W4309726515 creator A5057307093 @default.
- W4309726515 creator A5058288803 @default.
- W4309726515 creator A5058740520 @default.
- W4309726515 creator A5061204905 @default.
- W4309726515 creator A5061653039 @default.
- W4309726515 creator A5062593266 @default.
- W4309726515 creator A5067129502 @default.
- W4309726515 creator A5070860490 @default.
- W4309726515 creator A5071757923 @default.
- W4309726515 creator A5073415816 @default.
- W4309726515 creator A5073789519 @default.
- W4309726515 creator A5075393352 @default.
- W4309726515 creator A5076282431 @default.
- W4309726515 creator A5076889913 @default.
- W4309726515 creator A5077991993 @default.
- W4309726515 creator A5079013335 @default.
- W4309726515 creator A5079326734 @default.
- W4309726515 creator A5080007807 @default.
- W4309726515 creator A5082631947 @default.
- W4309726515 creator A5083141882 @default.
- W4309726515 creator A5086070287 @default.
- W4309726515 creator A5087072134 @default.
- W4309726515 creator A5089604707 @default.
- W4309726515 creator A5090701850 @default.
- W4309726515 creator A5091796976 @default.
- W4309726515 date "2023-03-01" @default.
- W4309726515 modified "2023-10-18" @default.
- W4309726515 title "Integrating genetic variants into clinical models for hepatocellular carcinoma risk stratification in cirrhosis" @default.
- W4309726515 cites W1830916533 @default.
- W4309726515 cites W1918905990 @default.
- W4309726515 cites W1966549856 @default.
- W4309726515 cites W1980154502 @default.
- W4309726515 cites W2017511982 @default.
- W4309726515 cites W2024155796 @default.
- W4309726515 cites W2045030989 @default.
- W4309726515 cites W2071180264 @default.
- W4309726515 cites W2155069705 @default.
- W4309726515 cites W2163403599 @default.
- W4309726515 cites W2163486683 @default.
- W4309726515 cites W2168230293 @default.
- W4309726515 cites W2226880313 @default.
- W4309726515 cites W2277004004 @default.
- W4309726515 cites W2332282497 @default.
- W4309726515 cites W2496240332 @default.
- W4309726515 cites W2519498039 @default.
- W4309726515 cites W2597405196 @default.
- W4309726515 cites W2767217085 @default.
- W4309726515 cites W2776941860 @default.
- W4309726515 cites W2793543636 @default.
- W4309726515 cites W2801866943 @default.
- W4309726515 cites W2801934618 @default.
- W4309726515 cites W2887745693 @default.
- W4309726515 cites W2937870159 @default.
- W4309726515 cites W3000074215 @default.
- W4309726515 cites W3009973508 @default.
- W4309726515 cites W3011352542 @default.
- W4309726515 cites W3039117614 @default.
- W4309726515 cites W3044553904 @default.
- W4309726515 cites W3047438069 @default.