Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309730103> ?p ?o ?g. }
- W4309730103 abstract "Background: Medical researchers and clinicians have shown much interest in developing machine learning (ML) algorithms to detect/predict surgical site infections (SSIs). However, little is known about the overall performance of ML algorithms in predicting SSIs and how to improve the algorithm's robustness. We conducted a systematic review and meta-analysis to summarize the performance of ML algorithms in SSIs case detection and prediction and to describe the impact of using unstructured and textual data in the development of ML algorithms. Methods: MEDLINE, EMBASE, CINAHL, CENTRAL and Web of Science were searched from inception to March 25, 2021. Study characteristics and algorithm development information were extracted. Performance statistics (e.g., sensitivity, area under the receiver operating characteristic curve [AUC]) were pooled using a random effect model. Stratified analysis was applied to different study characteristic levels. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed. Results: Of 945 articles identified, 108 algorithms from 32 articles were included in this review. The overall pooled estimate of the SSI incidence rate was 3.67%, 95% CI: 3.58–3.76. Mixed-use of structured and textual data-based algorithms (pooled estimates of sensitivity 0.83, 95% CI: 0.78–0.87, specificity 0.92, 95% CI: 0.86–0.95, AUC 0.92, 95% CI: 0.89–0.94) outperformed algorithms solely based on structured data (sensitivity 0.56, 95% CI:0.43–0.69, specificity 0.95, 95% CI:0.91–0.97, AUC = 0.90, 95% CI: 0.87–0.92). Conclusions: ML algorithms developed with structured and textual data provided optimal performance. External validation of ML algorithms is needed to translate current knowledge into clinical practice." @default.
- W4309730103 created "2022-11-29" @default.
- W4309730103 creator A5011867397 @default.
- W4309730103 creator A5022135205 @default.
- W4309730103 creator A5027529961 @default.
- W4309730103 creator A5043132261 @default.
- W4309730103 creator A5052576941 @default.
- W4309730103 creator A5056114214 @default.
- W4309730103 creator A5061073174 @default.
- W4309730103 creator A5063697410 @default.
- W4309730103 creator A5065982019 @default.
- W4309730103 creator A5083404544 @default.
- W4309730103 creator A5090161362 @default.
- W4309730103 date "2022-12-01" @default.
- W4309730103 modified "2023-10-14" @default.
- W4309730103 title "Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis" @default.
- W4309730103 cites W1417620923 @default.
- W4309730103 cites W1444168786 @default.
- W4309730103 cites W1975002062 @default.
- W4309730103 cites W2009790391 @default.
- W4309730103 cites W2020488794 @default.
- W4309730103 cites W2025596434 @default.
- W4309730103 cites W2066138297 @default.
- W4309730103 cites W2073917035 @default.
- W4309730103 cites W2100280977 @default.
- W4309730103 cites W2107638293 @default.
- W4309730103 cites W2111515833 @default.
- W4309730103 cites W2126137484 @default.
- W4309730103 cites W2126591076 @default.
- W4309730103 cites W2136001571 @default.
- W4309730103 cites W2138152245 @default.
- W4309730103 cites W2254050631 @default.
- W4309730103 cites W2299192044 @default.
- W4309730103 cites W2350657927 @default.
- W4309730103 cites W2400915816 @default.
- W4309730103 cites W2417171118 @default.
- W4309730103 cites W2529488695 @default.
- W4309730103 cites W2547998211 @default.
- W4309730103 cites W2593364664 @default.
- W4309730103 cites W2594917386 @default.
- W4309730103 cites W2610936380 @default.
- W4309730103 cites W2620686777 @default.
- W4309730103 cites W2785663776 @default.
- W4309730103 cites W2785704959 @default.
- W4309730103 cites W2787534237 @default.
- W4309730103 cites W2794237618 @default.
- W4309730103 cites W2810531395 @default.
- W4309730103 cites W2883463657 @default.
- W4309730103 cites W2916140481 @default.
- W4309730103 cites W2965313157 @default.
- W4309730103 cites W2966129221 @default.
- W4309730103 cites W2966316153 @default.
- W4309730103 cites W2978315017 @default.
- W4309730103 cites W2979413264 @default.
- W4309730103 cites W2998169119 @default.
- W4309730103 cites W3004718903 @default.
- W4309730103 cites W3008964408 @default.
- W4309730103 cites W3009812747 @default.
- W4309730103 cites W3012505385 @default.
- W4309730103 cites W3016579984 @default.
- W4309730103 cites W3026485417 @default.
- W4309730103 cites W3036858161 @default.
- W4309730103 cites W3048403583 @default.
- W4309730103 cites W3093013726 @default.
- W4309730103 cites W3197313539 @default.
- W4309730103 doi "https://doi.org/10.1016/j.amsu.2022.104956" @default.
- W4309730103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36582918" @default.
- W4309730103 hasPublicationYear "2022" @default.
- W4309730103 type Work @default.
- W4309730103 citedByCount "3" @default.
- W4309730103 countsByYear W43097301032023 @default.
- W4309730103 crossrefType "journal-article" @default.
- W4309730103 hasAuthorship W4309730103A5011867397 @default.
- W4309730103 hasAuthorship W4309730103A5022135205 @default.
- W4309730103 hasAuthorship W4309730103A5027529961 @default.
- W4309730103 hasAuthorship W4309730103A5043132261 @default.
- W4309730103 hasAuthorship W4309730103A5052576941 @default.
- W4309730103 hasAuthorship W4309730103A5056114214 @default.
- W4309730103 hasAuthorship W4309730103A5061073174 @default.
- W4309730103 hasAuthorship W4309730103A5063697410 @default.
- W4309730103 hasAuthorship W4309730103A5065982019 @default.
- W4309730103 hasAuthorship W4309730103A5083404544 @default.
- W4309730103 hasAuthorship W4309730103A5090161362 @default.
- W4309730103 hasBestOaLocation W43097301031 @default.
- W4309730103 hasConcept C11413529 @default.
- W4309730103 hasConcept C118552586 @default.
- W4309730103 hasConcept C119857082 @default.
- W4309730103 hasConcept C126322002 @default.
- W4309730103 hasConcept C154945302 @default.
- W4309730103 hasConcept C17744445 @default.
- W4309730103 hasConcept C189708586 @default.
- W4309730103 hasConcept C199539241 @default.
- W4309730103 hasConcept C27415008 @default.
- W4309730103 hasConcept C2779473830 @default.
- W4309730103 hasConcept C2781145037 @default.
- W4309730103 hasConcept C41008148 @default.
- W4309730103 hasConcept C44249647 @default.
- W4309730103 hasConcept C58471807 @default.
- W4309730103 hasConcept C71924100 @default.
- W4309730103 hasConcept C95190672 @default.