Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309731565> ?p ?o ?g. }
- W4309731565 endingPage "105601" @default.
- W4309731565 startingPage "105601" @default.
- W4309731565 abstract "Breast ultrasound images segmentation is one of the key steps in clinical auxiliary diagnosis of breast cancer, which seriously threatens women’s health. Currently, deep learning methods have been successfully applied to breast tumors segmentation. However, blurred boundaries, heterostructure and other factors can cause serious missed detections and false detections in the segmentation results. In this paper, we developed a novel refinement residual convolutional network to segment breast tumors accurately from ultrasound images, which mainly composed of SegNet with deep supervision module, missed detection residual network and false detection residual network. In SegNet, we add six side-out deep supervision modules to guide the network to learn to predict precise segmentation masks scale-by-scale. In missed detection residual network, the receptive field provided by different dilation rates can provide more global information, which is easily lost in deep convolutional layer. The introduction of false detection and missed detection residual network can promotes the network to make more efforts on those hardly-predicted pixels to help us obtain more accurate segmentation results of the breast tumor. To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation approaches using five quantitative metrics on two public breast datasets. Experimental results demonstrate that our method achieves the best segmentation results, which indicates that our method has better adaptability on breast tumors segmentation." @default.
- W4309731565 created "2022-11-29" @default.
- W4309731565 creator A5024534850 @default.
- W4309731565 creator A5049382489 @default.
- W4309731565 creator A5059674410 @default.
- W4309731565 date "2023-01-01" @default.
- W4309731565 modified "2023-10-18" @default.
- W4309731565 title "RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation" @default.
- W4309731565 cites W1903029394 @default.
- W4309731565 cites W1990379362 @default.
- W4309731565 cites W2017877823 @default.
- W4309731565 cites W2074620982 @default.
- W4309731565 cites W2122264932 @default.
- W4309731565 cites W2566352549 @default.
- W4309731565 cites W2571079985 @default.
- W4309731565 cites W2613155248 @default.
- W4309731565 cites W2744692634 @default.
- W4309731565 cites W2899332989 @default.
- W4309731565 cites W2962767316 @default.
- W4309731565 cites W2963104294 @default.
- W4309731565 cites W2963125010 @default.
- W4309731565 cites W2963446712 @default.
- W4309731565 cites W2963881378 @default.
- W4309731565 cites W2969908837 @default.
- W4309731565 cites W2985868371 @default.
- W4309731565 cites W2996290406 @default.
- W4309731565 cites W3017210342 @default.
- W4309731565 cites W3047155262 @default.
- W4309731565 cites W3047822139 @default.
- W4309731565 cites W3081160612 @default.
- W4309731565 cites W3094910079 @default.
- W4309731565 cites W3096947210 @default.
- W4309731565 cites W3107818347 @default.
- W4309731565 cites W3126389275 @default.
- W4309731565 cites W3127426043 @default.
- W4309731565 cites W3183202665 @default.
- W4309731565 cites W3184320749 @default.
- W4309731565 cites W3191963755 @default.
- W4309731565 cites W3195497684 @default.
- W4309731565 cites W3196889315 @default.
- W4309731565 cites W3212672269 @default.
- W4309731565 cites W3214449943 @default.
- W4309731565 cites W4200364571 @default.
- W4309731565 cites W4212848489 @default.
- W4309731565 cites W4213419131 @default.
- W4309731565 cites W4214627683 @default.
- W4309731565 cites W4226178949 @default.
- W4309731565 doi "https://doi.org/10.1016/j.engappai.2022.105601" @default.
- W4309731565 hasPublicationYear "2023" @default.
- W4309731565 type Work @default.
- W4309731565 citedByCount "7" @default.
- W4309731565 countsByYear W43097315652023 @default.
- W4309731565 crossrefType "journal-article" @default.
- W4309731565 hasAuthorship W4309731565A5024534850 @default.
- W4309731565 hasAuthorship W4309731565A5049382489 @default.
- W4309731565 hasAuthorship W4309731565A5059674410 @default.
- W4309731565 hasConcept C108583219 @default.
- W4309731565 hasConcept C11413529 @default.
- W4309731565 hasConcept C121608353 @default.
- W4309731565 hasConcept C126322002 @default.
- W4309731565 hasConcept C153180895 @default.
- W4309731565 hasConcept C154945302 @default.
- W4309731565 hasConcept C155512373 @default.
- W4309731565 hasConcept C160633673 @default.
- W4309731565 hasConcept C2777423100 @default.
- W4309731565 hasConcept C2780472235 @default.
- W4309731565 hasConcept C31972630 @default.
- W4309731565 hasConcept C41008148 @default.
- W4309731565 hasConcept C530470458 @default.
- W4309731565 hasConcept C71924100 @default.
- W4309731565 hasConcept C81363708 @default.
- W4309731565 hasConcept C89600930 @default.
- W4309731565 hasConceptScore W4309731565C108583219 @default.
- W4309731565 hasConceptScore W4309731565C11413529 @default.
- W4309731565 hasConceptScore W4309731565C121608353 @default.
- W4309731565 hasConceptScore W4309731565C126322002 @default.
- W4309731565 hasConceptScore W4309731565C153180895 @default.
- W4309731565 hasConceptScore W4309731565C154945302 @default.
- W4309731565 hasConceptScore W4309731565C155512373 @default.
- W4309731565 hasConceptScore W4309731565C160633673 @default.
- W4309731565 hasConceptScore W4309731565C2777423100 @default.
- W4309731565 hasConceptScore W4309731565C2780472235 @default.
- W4309731565 hasConceptScore W4309731565C31972630 @default.
- W4309731565 hasConceptScore W4309731565C41008148 @default.
- W4309731565 hasConceptScore W4309731565C530470458 @default.
- W4309731565 hasConceptScore W4309731565C71924100 @default.
- W4309731565 hasConceptScore W4309731565C81363708 @default.
- W4309731565 hasConceptScore W4309731565C89600930 @default.
- W4309731565 hasFunder F4320321001 @default.
- W4309731565 hasLocation W43097315651 @default.
- W4309731565 hasOpenAccess W4309731565 @default.
- W4309731565 hasPrimaryLocation W43097315651 @default.
- W4309731565 hasRelatedWork W2005437358 @default.
- W4309731565 hasRelatedWork W2517104666 @default.
- W4309731565 hasRelatedWork W2731899572 @default.
- W4309731565 hasRelatedWork W2782645198 @default.
- W4309731565 hasRelatedWork W2999805992 @default.
- W4309731565 hasRelatedWork W3116150086 @default.