Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309732834> ?p ?o ?g. }
- W4309732834 abstract "Purpose: Radiation therapy (RT) is one of the main treatments for cancer. The response to radiotherapy varies widely between individuals and some patients have poor response to RT treatment due to tumor radioresistance. Stratifying patients according to molecular signatures of individual tumor characteristics can improve clinical treatment. In here, we aimed to use clinical and genomic databases to develop miRNA signatures that can predict response to radiotherapy in various cancer types. Methods: We analyzed the miRNAs profiles using tumor samples treated with RT across eight types of human cancers from TCGA database. These samples were divided into response group (S, n = 224) and progressive disease group (R, n = 134) based on RT response of tumors. To enhance the discrimination for S and R samples, the predictive models based on binary logistic regression were developed to identify the best combinations of multiple miRNAs. Results: The miRNAs differentially expressed between the groups S and R in each caner type were identified. Total 47 miRNAs were identified in eight cancer types (p values <0.05, t-test), including several miRNAs previously reported to be associated with radiotherapy sensitivity. Functional enrichment analysis revealed that epithelial-to-mesenchymal transition (EMT), stem cell, NF-κB signal, immune response, cell death, cell cycle, and DNA damage response and DNA damage repair processes were significantly enriched. The cancer-type-specific miRNA signatures were identified, which consist of 2-13 of miRNAs in each caner type. Receiver operating characteristic (ROC) analyses showed that the most of individual miRNAs were effective in distinguishing responsive and non-responsive patients (the area under the curve (AUC) ranging from 0.606 to 0.889). The patient stratification was further improved by applying the combinatorial model of miRNA expression (AUC ranging from 0.711 to 0.992). Also, five miRNAs that were significantly associated with overall survival were identified as prognostic miRNAs. Conclusion: These mRNA signatures could be used as potential biomarkers selecting patients who will benefit from radiotherapy. Our study identified a series of miRNA that were differentially expressed between RT good responders and poor responders, providing useful clues for further functional assays to demonstrate a possible regulatory role in radioresistance." @default.
- W4309732834 created "2022-11-29" @default.
- W4309732834 creator A5018863416 @default.
- W4309732834 creator A5021770634 @default.
- W4309732834 creator A5027749911 @default.
- W4309732834 creator A5028226970 @default.
- W4309732834 creator A5042520842 @default.
- W4309732834 creator A5058735552 @default.
- W4309732834 creator A5091124184 @default.
- W4309732834 date "2022-11-22" @default.
- W4309732834 modified "2023-10-16" @default.
- W4309732834 title "Improving the prediction for the response to radiotherapy of clinical tumor samples by using combinatorial model of MicroRNA expression" @default.
- W4309732834 cites W1899496194 @default.
- W4309732834 cites W1969043065 @default.
- W4309732834 cites W1969294374 @default.
- W4309732834 cites W1987275335 @default.
- W4309732834 cites W1997203401 @default.
- W4309732834 cites W1997719110 @default.
- W4309732834 cites W1997952673 @default.
- W4309732834 cites W2024444713 @default.
- W4309732834 cites W2030527067 @default.
- W4309732834 cites W2036727594 @default.
- W4309732834 cites W2040207029 @default.
- W4309732834 cites W2042194227 @default.
- W4309732834 cites W2045604306 @default.
- W4309732834 cites W2051430335 @default.
- W4309732834 cites W2055970002 @default.
- W4309732834 cites W2059550947 @default.
- W4309732834 cites W2059806955 @default.
- W4309732834 cites W2074908827 @default.
- W4309732834 cites W2079647703 @default.
- W4309732834 cites W2094740961 @default.
- W4309732834 cites W2100980793 @default.
- W4309732834 cites W2120991684 @default.
- W4309732834 cites W2126484354 @default.
- W4309732834 cites W2133959309 @default.
- W4309732834 cites W2142471892 @default.
- W4309732834 cites W2146629016 @default.
- W4309732834 cites W2153466677 @default.
- W4309732834 cites W2157449473 @default.
- W4309732834 cites W2163132442 @default.
- W4309732834 cites W2179438025 @default.
- W4309732834 cites W2184194602 @default.
- W4309732834 cites W2234731040 @default.
- W4309732834 cites W2416991687 @default.
- W4309732834 cites W2557765022 @default.
- W4309732834 cites W2572164705 @default.
- W4309732834 cites W2588450094 @default.
- W4309732834 cites W2607187515 @default.
- W4309732834 cites W2617822530 @default.
- W4309732834 cites W2735000611 @default.
- W4309732834 cites W2792825808 @default.
- W4309732834 cites W2802832662 @default.
- W4309732834 cites W2884815017 @default.
- W4309732834 cites W2885891381 @default.
- W4309732834 cites W2937701676 @default.
- W4309732834 cites W2959270393 @default.
- W4309732834 cites W2964822113 @default.
- W4309732834 cites W3009150146 @default.
- W4309732834 cites W3022486080 @default.
- W4309732834 cites W3093862876 @default.
- W4309732834 cites W3129487631 @default.
- W4309732834 cites W3168669958 @default.
- W4309732834 cites W4200086780 @default.
- W4309732834 cites W4214950942 @default.
- W4309732834 cites W4229451081 @default.
- W4309732834 cites W4232542801 @default.
- W4309732834 cites W4280639340 @default.
- W4309732834 cites W4291605812 @default.
- W4309732834 doi "https://doi.org/10.3389/fgene.2022.1069112" @default.
- W4309732834 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36482894" @default.
- W4309732834 hasPublicationYear "2022" @default.
- W4309732834 type Work @default.
- W4309732834 citedByCount "0" @default.
- W4309732834 crossrefType "journal-article" @default.
- W4309732834 hasAuthorship W4309732834A5018863416 @default.
- W4309732834 hasAuthorship W4309732834A5021770634 @default.
- W4309732834 hasAuthorship W4309732834A5027749911 @default.
- W4309732834 hasAuthorship W4309732834A5028226970 @default.
- W4309732834 hasAuthorship W4309732834A5042520842 @default.
- W4309732834 hasAuthorship W4309732834A5058735552 @default.
- W4309732834 hasAuthorship W4309732834A5091124184 @default.
- W4309732834 hasBestOaLocation W43097328341 @default.
- W4309732834 hasConcept C104317684 @default.
- W4309732834 hasConcept C121608353 @default.
- W4309732834 hasConcept C126322002 @default.
- W4309732834 hasConcept C143425029 @default.
- W4309732834 hasConcept C143998085 @default.
- W4309732834 hasConcept C145059251 @default.
- W4309732834 hasConcept C151956035 @default.
- W4309732834 hasConcept C2779134260 @default.
- W4309732834 hasConcept C502942594 @default.
- W4309732834 hasConcept C509974204 @default.
- W4309732834 hasConcept C54355233 @default.
- W4309732834 hasConcept C552990157 @default.
- W4309732834 hasConcept C58471807 @default.
- W4309732834 hasConcept C58962609 @default.
- W4309732834 hasConcept C60644358 @default.
- W4309732834 hasConcept C70721500 @default.
- W4309732834 hasConcept C71924100 @default.