Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309736075> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4309736075 endingPage "5849" @default.
- W4309736075 startingPage "5849" @default.
- W4309736075 abstract "The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization are often difficult to establish for practical applications, resulting in large forest height estimation errors. As an alternative, machine learning approaches offer the benefit of model simplicity, but these tools provide limited capabilities for interpretation and generalization. To explore the forest height estimation method combining the mechanism model and the empirical model, we utilized UAVSAR multi-baseline PolInSAR L-band data from the AfriSAR project and propose a solution of a mechanism model combined with machine learning. In this paper, two mechanism models were used as controls, the RVoG three-phase method and the RVoG phase-coherence amplitude method. The vertical structure parameters of the forest obtained from the mechanism model were used as the independent variables of the machine learning model. Random forest (RF) and partial least squares (PLS) regression models were used to invert the forest canopy height. Results show that the inversion accuracy of the machine learning method, combined with the mechanism model, is significantly better than that of the single-mechanism model method. The most influential independent variables were penetration depth, volume coherence phase center height, coherence separation, and baseline selection. With the precondition that the cumulative contribution of the independent variables was greater than 90%, the number of independent variables in the two study areas was reduced from 19 to 4, and the accuracy of the RF-RVoG-DEP model was higher than that of the PLS-RVoG-DEP model. For the Lope test area, the R2 of the RVoG phase coherence amplitude method is 0.723, the RMSE is 8.583 m, and the model bias is −2.431 m; the R2 of the RVoG three-stage method is 0.775, the RMSE is 7.748, and the bias is 1.120 m, the R2 of the PLS-RVoG-DEP model is 0.850, the RMSE is 6.320 m, and the bias is 0.002 m; and the R2 of the RF-RVoG-DEP model is 0.900, the RMSE is 5.154 m, and the bias is −0.061 m. The results for the Pongara test area are consistent with the pattern for the Lope test area. The combined “fusion model” offers a substantial improvement in forest height estimation from the traditional mechanism modeling method." @default.
- W4309736075 created "2022-11-29" @default.
- W4309736075 creator A5002068378 @default.
- W4309736075 creator A5030458072 @default.
- W4309736075 creator A5056280551 @default.
- W4309736075 creator A5068046582 @default.
- W4309736075 creator A5088009928 @default.
- W4309736075 date "2022-11-18" @default.
- W4309736075 modified "2023-09-26" @default.
- W4309736075 title "A Method for Forest Canopy Height Inversion Based on Machine Learning and Feature Mining Using UAVSAR" @default.
- W4309736075 cites W1179254689 @default.
- W4309736075 cites W1968330818 @default.
- W4309736075 cites W1981365660 @default.
- W4309736075 cites W1992541517 @default.
- W4309736075 cites W2018130020 @default.
- W4309736075 cites W2044769733 @default.
- W4309736075 cites W2044987471 @default.
- W4309736075 cites W2045505889 @default.
- W4309736075 cites W2047323441 @default.
- W4309736075 cites W2070795492 @default.
- W4309736075 cites W2076546844 @default.
- W4309736075 cites W2077809046 @default.
- W4309736075 cites W2097701306 @default.
- W4309736075 cites W2105850256 @default.
- W4309736075 cites W2119184976 @default.
- W4309736075 cites W2142677925 @default.
- W4309736075 cites W2160969117 @default.
- W4309736075 cites W2416310637 @default.
- W4309736075 cites W2515583119 @default.
- W4309736075 cites W2767921252 @default.
- W4309736075 cites W2772817128 @default.
- W4309736075 cites W2807913786 @default.
- W4309736075 cites W2891271911 @default.
- W4309736075 cites W2897150309 @default.
- W4309736075 cites W2902644708 @default.
- W4309736075 cites W2908772002 @default.
- W4309736075 cites W2911799365 @default.
- W4309736075 cites W2911964244 @default.
- W4309736075 cites W2962763794 @default.
- W4309736075 cites W3026127998 @default.
- W4309736075 cites W3095923272 @default.
- W4309736075 cites W3129634141 @default.
- W4309736075 doi "https://doi.org/10.3390/rs14225849" @default.
- W4309736075 hasPublicationYear "2022" @default.
- W4309736075 type Work @default.
- W4309736075 citedByCount "2" @default.
- W4309736075 countsByYear W43097360752023 @default.
- W4309736075 crossrefType "journal-article" @default.
- W4309736075 hasAuthorship W4309736075A5002068378 @default.
- W4309736075 hasAuthorship W4309736075A5030458072 @default.
- W4309736075 hasAuthorship W4309736075A5056280551 @default.
- W4309736075 hasAuthorship W4309736075A5068046582 @default.
- W4309736075 hasAuthorship W4309736075A5088009928 @default.
- W4309736075 hasBestOaLocation W43097360751 @default.
- W4309736075 hasConcept C109007969 @default.
- W4309736075 hasConcept C111368507 @default.
- W4309736075 hasConcept C119857082 @default.
- W4309736075 hasConcept C12725497 @default.
- W4309736075 hasConcept C127313418 @default.
- W4309736075 hasConcept C151730666 @default.
- W4309736075 hasConcept C154945302 @default.
- W4309736075 hasConcept C169258074 @default.
- W4309736075 hasConcept C1893757 @default.
- W4309736075 hasConcept C41008148 @default.
- W4309736075 hasConcept C62649853 @default.
- W4309736075 hasConceptScore W4309736075C109007969 @default.
- W4309736075 hasConceptScore W4309736075C111368507 @default.
- W4309736075 hasConceptScore W4309736075C119857082 @default.
- W4309736075 hasConceptScore W4309736075C12725497 @default.
- W4309736075 hasConceptScore W4309736075C127313418 @default.
- W4309736075 hasConceptScore W4309736075C151730666 @default.
- W4309736075 hasConceptScore W4309736075C154945302 @default.
- W4309736075 hasConceptScore W4309736075C169258074 @default.
- W4309736075 hasConceptScore W4309736075C1893757 @default.
- W4309736075 hasConceptScore W4309736075C41008148 @default.
- W4309736075 hasConceptScore W4309736075C62649853 @default.
- W4309736075 hasFunder F4320321001 @default.
- W4309736075 hasIssue "22" @default.
- W4309736075 hasLocation W43097360751 @default.
- W4309736075 hasOpenAccess W4309736075 @default.
- W4309736075 hasPrimaryLocation W43097360751 @default.
- W4309736075 hasRelatedWork W2911455822 @default.
- W4309736075 hasRelatedWork W3018959556 @default.
- W4309736075 hasRelatedWork W3174196512 @default.
- W4309736075 hasRelatedWork W3211546796 @default.
- W4309736075 hasRelatedWork W4281560664 @default.
- W4309736075 hasRelatedWork W4281616679 @default.
- W4309736075 hasRelatedWork W4293525103 @default.
- W4309736075 hasRelatedWork W4308191010 @default.
- W4309736075 hasRelatedWork W4318350883 @default.
- W4309736075 hasRelatedWork W4323021782 @default.
- W4309736075 hasVolume "14" @default.
- W4309736075 isParatext "false" @default.
- W4309736075 isRetracted "false" @default.
- W4309736075 workType "article" @default.