Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309740981> ?p ?o ?g. }
- W4309740981 endingPage "3321" @default.
- W4309740981 startingPage "3303" @default.
- W4309740981 abstract "<abstract><p>The role of integral inequalities can be seen in both applied and theoretical mathematics fields. According to the definition of convexity, it is possible to relate both concepts of convexity and integral inequality. Furthermore, convexity plays a key role in the topic of inclusions as a result of its definitional behavior. The importance and superior applications of convex functions are well known, particularly in the areas of integration, variational inequality, and optimization. In this paper, various types of inequalities are introduced using inclusion relations. The inclusion relation enables us firstly to derive some Hermite-Hadamard inequalities (H.H-inequalities) and then to present Jensen inequality for harmonical $ h $-Godunova-Levin interval-valued functions (GL-IVFS) via Riemann integral operator. Moreover, the findings presented in this study have been verified with the use of useful examples that are not trivial.</p></abstract>" @default.
- W4309740981 created "2022-11-29" @default.
- W4309740981 creator A5032351563 @default.
- W4309740981 creator A5046581790 @default.
- W4309740981 creator A5047711449 @default.
- W4309740981 creator A5089496116 @default.
- W4309740981 date "2023-01-01" @default.
- W4309740981 modified "2023-10-18" @default.
- W4309740981 title "Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions" @default.
- W4309740981 cites W1542253753 @default.
- W4309740981 cites W1935682865 @default.
- W4309740981 cites W2012473858 @default.
- W4309740981 cites W2070023227 @default.
- W4309740981 cites W2072882480 @default.
- W4309740981 cites W2105712817 @default.
- W4309740981 cites W2169964384 @default.
- W4309740981 cites W2211826860 @default.
- W4309740981 cites W2556396095 @default.
- W4309740981 cites W2577981702 @default.
- W4309740981 cites W2607426767 @default.
- W4309740981 cites W2753517469 @default.
- W4309740981 cites W2767724397 @default.
- W4309740981 cites W2790909821 @default.
- W4309740981 cites W2800481507 @default.
- W4309740981 cites W2805577730 @default.
- W4309740981 cites W2900139894 @default.
- W4309740981 cites W2980308255 @default.
- W4309740981 cites W2980553120 @default.
- W4309740981 cites W2984309786 @default.
- W4309740981 cites W3012109075 @default.
- W4309740981 cites W3048865070 @default.
- W4309740981 cites W3143659466 @default.
- W4309740981 cites W3160390677 @default.
- W4309740981 cites W3172694195 @default.
- W4309740981 cites W3173350212 @default.
- W4309740981 cites W3211008961 @default.
- W4309740981 cites W4200198800 @default.
- W4309740981 cites W4220687501 @default.
- W4309740981 cites W4291016807 @default.
- W4309740981 cites W4292476186 @default.
- W4309740981 cites W4293812869 @default.
- W4309740981 cites W4294081341 @default.
- W4309740981 cites W4295797457 @default.
- W4309740981 cites W4296219562 @default.
- W4309740981 cites W4307732528 @default.
- W4309740981 doi "https://doi.org/10.3934/math.2023170" @default.
- W4309740981 hasPublicationYear "2023" @default.
- W4309740981 type Work @default.
- W4309740981 citedByCount "9" @default.
- W4309740981 countsByYear W43097409812022 @default.
- W4309740981 countsByYear W43097409812023 @default.
- W4309740981 crossrefType "journal-article" @default.
- W4309740981 hasAuthorship W4309740981A5032351563 @default.
- W4309740981 hasAuthorship W4309740981A5046581790 @default.
- W4309740981 hasAuthorship W4309740981A5047711449 @default.
- W4309740981 hasAuthorship W4309740981A5089496116 @default.
- W4309740981 hasBestOaLocation W43097409811 @default.
- W4309740981 hasConcept C104317684 @default.
- W4309740981 hasConcept C106159729 @default.
- W4309740981 hasConcept C112680207 @default.
- W4309740981 hasConcept C12108790 @default.
- W4309740981 hasConcept C134306372 @default.
- W4309740981 hasConcept C136119220 @default.
- W4309740981 hasConcept C145446738 @default.
- W4309740981 hasConcept C157972887 @default.
- W4309740981 hasConcept C158448853 @default.
- W4309740981 hasConcept C162324750 @default.
- W4309740981 hasConcept C17020691 @default.
- W4309740981 hasConcept C174169938 @default.
- W4309740981 hasConcept C185592680 @default.
- W4309740981 hasConcept C18903297 @default.
- W4309740981 hasConcept C202444582 @default.
- W4309740981 hasConcept C2524010 @default.
- W4309740981 hasConcept C2777299769 @default.
- W4309740981 hasConcept C28826006 @default.
- W4309740981 hasConcept C33923547 @default.
- W4309740981 hasConcept C45555294 @default.
- W4309740981 hasConcept C55493867 @default.
- W4309740981 hasConcept C60292330 @default.
- W4309740981 hasConcept C72134830 @default.
- W4309740981 hasConcept C86339819 @default.
- W4309740981 hasConcept C86803240 @default.
- W4309740981 hasConceptScore W4309740981C104317684 @default.
- W4309740981 hasConceptScore W4309740981C106159729 @default.
- W4309740981 hasConceptScore W4309740981C112680207 @default.
- W4309740981 hasConceptScore W4309740981C12108790 @default.
- W4309740981 hasConceptScore W4309740981C134306372 @default.
- W4309740981 hasConceptScore W4309740981C136119220 @default.
- W4309740981 hasConceptScore W4309740981C145446738 @default.
- W4309740981 hasConceptScore W4309740981C157972887 @default.
- W4309740981 hasConceptScore W4309740981C158448853 @default.
- W4309740981 hasConceptScore W4309740981C162324750 @default.
- W4309740981 hasConceptScore W4309740981C17020691 @default.
- W4309740981 hasConceptScore W4309740981C174169938 @default.
- W4309740981 hasConceptScore W4309740981C185592680 @default.
- W4309740981 hasConceptScore W4309740981C18903297 @default.
- W4309740981 hasConceptScore W4309740981C202444582 @default.
- W4309740981 hasConceptScore W4309740981C2524010 @default.