Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309744061> ?p ?o ?g. }
- W4309744061 endingPage "3798" @default.
- W4309744061 startingPage "3798" @default.
- W4309744061 abstract "Developing countries have had numerous obstacles in diagnosing the COVID-19 worldwide pandemic since its emergence. One of the most important ways to control the spread of this disease begins with early detection, which allows that isolation and treatment could perhaps be started. According to recent results, chest X-ray scans provide important information about the onset of the infection, and this information may be evaluated so that diagnosis and treatment can begin sooner. This is where artificial intelligence collides with skilled clinicians’ diagnostic abilities. The suggested study’s goal is to make a contribution to battling the worldwide epidemic by using a simple convolutional neural network (CNN) model to construct an automated image analysis framework for recognizing COVID-19 afflicted chest X-ray data. To improve classification accuracy, fully connected layers of simple CNN were replaced by the efficient extreme gradient boosting (XGBoost) classifier, which is used to categorize extracted features by the convolutional layers. Additionally, a hybrid version of the arithmetic optimization algorithm (AOA), which is also developed to facilitate proposed research, is used to tune XGBoost hyperparameters for COVID-19 chest X-ray images. Reported experimental data showed that this approach outperforms other state-of-the-art methods, including other cutting-edge metaheuristics algorithms, that were tested in the same framework. For validation purposes, a balanced X-ray images dataset with 12,000 observations, belonging to normal, COVID-19 and viral pneumonia classes, was used. The proposed method, where XGBoost was tuned by introduced hybrid AOA, showed superior performance, achieving a classification accuracy of approximately 99.39% and weighted average precision, recall and F1-score of 0.993889, 0.993887 and 0.993887, respectively." @default.
- W4309744061 created "2022-11-29" @default.
- W4309744061 creator A5051674932 @default.
- W4309744061 creator A5057520731 @default.
- W4309744061 creator A5061798785 @default.
- W4309744061 creator A5062006226 @default.
- W4309744061 creator A5064081550 @default.
- W4309744061 creator A5071964814 @default.
- W4309744061 creator A5072469505 @default.
- W4309744061 date "2022-11-18" @default.
- W4309744061 modified "2023-10-16" @default.
- W4309744061 title "Hybrid CNN and XGBoost Model Tuned by Modified Arithmetic Optimization Algorithm for COVID-19 Early Diagnostics from X-ray Images" @default.
- W4309744061 cites W1034159276 @default.
- W4309744061 cites W1595159159 @default.
- W4309744061 cites W1849277567 @default.
- W4309744061 cites W1999284878 @default.
- W4309744061 cites W2016944307 @default.
- W4309744061 cites W2031183907 @default.
- W4309744061 cites W2043845271 @default.
- W4309744061 cites W2057848726 @default.
- W4309744061 cites W2061438946 @default.
- W4309744061 cites W2097117768 @default.
- W4309744061 cites W2125390132 @default.
- W4309744061 cites W2144317842 @default.
- W4309744061 cites W2151554678 @default.
- W4309744061 cites W2156332201 @default.
- W4309744061 cites W2157833270 @default.
- W4309744061 cites W2232317135 @default.
- W4309744061 cites W2290883490 @default.
- W4309744061 cites W2548780814 @default.
- W4309744061 cites W2618530766 @default.
- W4309744061 cites W2620983293 @default.
- W4309744061 cites W2622826443 @default.
- W4309744061 cites W2731488294 @default.
- W4309744061 cites W2742961367 @default.
- W4309744061 cites W2755520760 @default.
- W4309744061 cites W277238768 @default.
- W4309744061 cites W2789876780 @default.
- W4309744061 cites W2792378075 @default.
- W4309744061 cites W2800871235 @default.
- W4309744061 cites W2802952265 @default.
- W4309744061 cites W2897188827 @default.
- W4309744061 cites W2900144270 @default.
- W4309744061 cites W2903572049 @default.
- W4309744061 cites W2909846570 @default.
- W4309744061 cites W2915445509 @default.
- W4309744061 cites W2919979744 @default.
- W4309744061 cites W2941816398 @default.
- W4309744061 cites W2952389999 @default.
- W4309744061 cites W2952822558 @default.
- W4309744061 cites W2962949934 @default.
- W4309744061 cites W2963658737 @default.
- W4309744061 cites W2964350391 @default.
- W4309744061 cites W3001897055 @default.
- W4309744061 cites W3003976313 @default.
- W4309744061 cites W3007040893 @default.
- W4309744061 cites W3007943565 @default.
- W4309744061 cites W3008627141 @default.
- W4309744061 cites W3009613205 @default.
- W4309744061 cites W3009875419 @default.
- W4309744061 cites W3012330071 @default.
- W4309744061 cites W3012981875 @default.
- W4309744061 cites W3013277995 @default.
- W4309744061 cites W3013601031 @default.
- W4309744061 cites W3014361272 @default.
- W4309744061 cites W3033135512 @default.
- W4309744061 cites W3041675466 @default.
- W4309744061 cites W3041850017 @default.
- W4309744061 cites W3044896726 @default.
- W4309744061 cites W3045460727 @default.
- W4309744061 cites W3045832254 @default.
- W4309744061 cites W3045854241 @default.
- W4309744061 cites W3046694022 @default.
- W4309744061 cites W3047928395 @default.
- W4309744061 cites W3049090132 @default.
- W4309744061 cites W3080543404 @default.
- W4309744061 cites W3087300877 @default.
- W4309744061 cites W3092694106 @default.
- W4309744061 cites W3099660494 @default.
- W4309744061 cites W3103635657 @default.
- W4309744061 cites W3104445526 @default.
- W4309744061 cites W3105346980 @default.
- W4309744061 cites W3112455820 @default.
- W4309744061 cites W3114266307 @default.
- W4309744061 cites W3119051141 @default.
- W4309744061 cites W3126875379 @default.
- W4309744061 cites W3132061261 @default.
- W4309744061 cites W3135057764 @default.
- W4309744061 cites W3148089430 @default.
- W4309744061 cites W3155128983 @default.
- W4309744061 cites W3159623433 @default.
- W4309744061 cites W3161085879 @default.
- W4309744061 cites W3162351260 @default.
- W4309744061 cites W3164271353 @default.
- W4309744061 cites W3173905877 @default.
- W4309744061 cites W3190587719 @default.
- W4309744061 cites W3193962426 @default.
- W4309744061 cites W3194627252 @default.