Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309746925> ?p ?o ?g. }
- W4309746925 endingPage "81" @default.
- W4309746925 startingPage "65" @default.
- W4309746925 abstract "Abstract In this decade, electro‐geophysical methods are widely used in different environmental subjects. Studies on soil remediation when polluted by dense non‐aqueous phase liquids (DNAPLs) has become a certain need for all countries. Geoelectrical methods have shown their potential to facilitate evaluating decontamination processes. Our challenge in this study was to understand how coupled temperature and saturation changes affect electro‐geophysical parameters in a contaminated 2D sample. The primary objective was to evaluate the efficiency and potential of spectral‐induced polarization (SIP) for monitoring the recovery of DNAPLs in contaminated porous media. A set of 2D tank experiments investigated the impacts of temperature and saturation changes on the electrical complex resistivity of a saturated porous medium under non‐isothermal conditions. The measurements were made with a coal‐tar and water fluid pair in a porous medium that has been simulated by 1 mm glass beads. Hot water was circulated around the tank and an immersion heater used to heat the porous medium in the tank at different stages. The SIP technique (also called complex resistivity) was used to measure the complex electrical resistivity of a medium in the frequency domain. The experimental results for a simple drainage case were validated using numerical modelling. The complex electrical resistivity was used to obtain the saturation field before and after imbibition. For this purpose, the generalized Archie's law obtained for the same fluid pair with 1D cells (with a vertical flow) was used. Our results from electrical resistivity measurements for saturation fields are in accordance with 2D tank images and can illustrate the saturation change with pointwise resistivity measurements. The results show that saturation change has the primary role in electrical resistivity variation compared to temperature (5%–7%). We also studied the effects of temperature change on the Cole–Cole parameters, and the results confirm our previous findings with the same variation trend in these parameters. The results from varying electrical complex resistivity from the 2D tank (with vertical and horizontal flow) in the laboratory conditions will help us to understand the coupled temperature and saturation effects on complex resistivity in a real polluted site case." @default.
- W4309746925 created "2022-11-29" @default.
- W4309746925 creator A5004512537 @default.
- W4309746925 creator A5011113774 @default.
- W4309746925 creator A5014800941 @default.
- W4309746925 creator A5017381247 @default.
- W4309746925 creator A5021216166 @default.
- W4309746925 creator A5064645846 @default.
- W4309746925 creator A5074051970 @default.
- W4309746925 creator A5079435214 @default.
- W4309746925 date "2022-12-23" @default.
- W4309746925 modified "2023-09-25" @default.
- W4309746925 title "Experimental study of electrical complex resistivity in a 2D multiphase porous medium under non‐isothermal conditions: Application to soil remediation monitoring" @default.
- W4309746925 cites W1761114886 @default.
- W4309746925 cites W1856465653 @default.
- W4309746925 cites W1888133144 @default.
- W4309746925 cites W1888770392 @default.
- W4309746925 cites W1968058584 @default.
- W4309746925 cites W1980043117 @default.
- W4309746925 cites W1984328997 @default.
- W4309746925 cites W1987977341 @default.
- W4309746925 cites W1997360367 @default.
- W4309746925 cites W2000034535 @default.
- W4309746925 cites W2002194678 @default.
- W4309746925 cites W2007696540 @default.
- W4309746925 cites W2008982771 @default.
- W4309746925 cites W2012712793 @default.
- W4309746925 cites W2019910124 @default.
- W4309746925 cites W2020848335 @default.
- W4309746925 cites W2026039351 @default.
- W4309746925 cites W2040620901 @default.
- W4309746925 cites W2041463041 @default.
- W4309746925 cites W2051699790 @default.
- W4309746925 cites W2052470809 @default.
- W4309746925 cites W2074511223 @default.
- W4309746925 cites W2079101747 @default.
- W4309746925 cites W2079609996 @default.
- W4309746925 cites W2087906424 @default.
- W4309746925 cites W2094803832 @default.
- W4309746925 cites W2097508996 @default.
- W4309746925 cites W2110407092 @default.
- W4309746925 cites W2128090053 @default.
- W4309746925 cites W2128627622 @default.
- W4309746925 cites W2134102596 @default.
- W4309746925 cites W2135183934 @default.
- W4309746925 cites W2135288601 @default.
- W4309746925 cites W2144003770 @default.
- W4309746925 cites W2147295154 @default.
- W4309746925 cites W2148257844 @default.
- W4309746925 cites W2148510781 @default.
- W4309746925 cites W2159867839 @default.
- W4309746925 cites W2162185865 @default.
- W4309746925 cites W2162522412 @default.
- W4309746925 cites W2171816574 @default.
- W4309746925 cites W2191628254 @default.
- W4309746925 cites W2235953861 @default.
- W4309746925 cites W2397884175 @default.
- W4309746925 cites W2463174749 @default.
- W4309746925 cites W2480926889 @default.
- W4309746925 cites W2510230763 @default.
- W4309746925 cites W2514922603 @default.
- W4309746925 cites W2525739663 @default.
- W4309746925 cites W2590967484 @default.
- W4309746925 cites W2591719522 @default.
- W4309746925 cites W2601894189 @default.
- W4309746925 cites W2767021887 @default.
- W4309746925 cites W2793741528 @default.
- W4309746925 cites W2903766947 @default.
- W4309746925 cites W2994245916 @default.
- W4309746925 cites W2996190018 @default.
- W4309746925 cites W2999650090 @default.
- W4309746925 cites W3013066576 @default.
- W4309746925 cites W3092563887 @default.
- W4309746925 cites W3110823507 @default.
- W4309746925 cites W3118029939 @default.
- W4309746925 cites W3119654522 @default.
- W4309746925 cites W3217178916 @default.
- W4309746925 cites W4230659663 @default.
- W4309746925 cites W587304849 @default.
- W4309746925 cites W640354944 @default.
- W4309746925 doi "https://doi.org/10.1002/nsg.12237" @default.
- W4309746925 hasPublicationYear "2022" @default.
- W4309746925 type Work @default.
- W4309746925 citedByCount "0" @default.
- W4309746925 crossrefType "journal-article" @default.
- W4309746925 hasAuthorship W4309746925A5004512537 @default.
- W4309746925 hasAuthorship W4309746925A5011113774 @default.
- W4309746925 hasAuthorship W4309746925A5014800941 @default.
- W4309746925 hasAuthorship W4309746925A5017381247 @default.
- W4309746925 hasAuthorship W4309746925A5021216166 @default.
- W4309746925 hasAuthorship W4309746925A5064645846 @default.
- W4309746925 hasAuthorship W4309746925A5074051970 @default.
- W4309746925 hasAuthorship W4309746925A5079435214 @default.
- W4309746925 hasBestOaLocation W43097469251 @default.
- W4309746925 hasConcept C100701293 @default.
- W4309746925 hasConcept C105569014 @default.
- W4309746925 hasConcept C112570922 @default.
- W4309746925 hasConcept C114614502 @default.