Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309757913> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4309757913 abstract "Abstract Genome-wide association studies (GWAS) are used to identify genetic variants significantly correlated with a target disease or phenotype as a first step to detect potentially causal genes. The availability of high-dimensional biomedical data in population-scale biobanks has enabled novel machine-learning-based phenotyping approaches in which machine learning (ML) algorithms rapidly and accurately phenotype large cohorts with both genomic and clinical data, increasing the statistical power to detect variants associated with a given phenotype. While recent work has demonstrated that these methods can be extended to diseases for which only low quality medical-record-based labels are available, it is not possible to quantify changes in statistical power since the underlying ground-truth liability scores for the complex, polygenic diseases represented by these medical-record-based phenotypes is unknown. In this work, we aim to empirically study the robustness of ML-based phenotyping procedures to label noise by applying varying levels of random noise to vertical cup-to-disc ratio (VCDR), a quantitative feature of the optic nerve that is predictable from color fundus imagery and strongly influences glaucoma referral risk. We show that the ML-based phenotyping procedure recovers the underlying liability score across noise levels, significantly improving genetic discovery and PRS predictive power relative to noisy equivalents. Furthermore, initial denoising experiments show promising preliminary results, suggesting that improving such methods will yield additional gains." @default.
- W4309757913 created "2022-11-29" @default.
- W4309757913 creator A5016230870 @default.
- W4309757913 creator A5021644000 @default.
- W4309757913 creator A5043383014 @default.
- W4309757913 creator A5081217089 @default.
- W4309757913 date "2022-11-18" @default.
- W4309757913 modified "2023-09-24" @default.
- W4309757913 title "An Empirical Study of ML-based Phenotyping and Denoising for Improved Genomic Discovery" @default.
- W4309757913 cites W1966775465 @default.
- W4309757913 cites W2082704080 @default.
- W4309757913 cites W2108598243 @default.
- W4309757913 cites W2157291679 @default.
- W4309757913 cites W2169113983 @default.
- W4309757913 cites W2416189753 @default.
- W4309757913 cites W2587257410 @default.
- W4309757913 cites W2732547613 @default.
- W4309757913 cites W2895693082 @default.
- W4309757913 cites W2950598813 @default.
- W4309757913 cites W2976808722 @default.
- W4309757913 cites W2997541507 @default.
- W4309757913 cites W3015900446 @default.
- W4309757913 cites W3021288445 @default.
- W4309757913 cites W3164496322 @default.
- W4309757913 cites W3165878141 @default.
- W4309757913 cites W3216026604 @default.
- W4309757913 cites W4206681883 @default.
- W4309757913 cites W4254751698 @default.
- W4309757913 cites W4295932287 @default.
- W4309757913 doi "https://doi.org/10.1101/2022.11.17.516907" @default.
- W4309757913 hasPublicationYear "2022" @default.
- W4309757913 type Work @default.
- W4309757913 citedByCount "0" @default.
- W4309757913 crossrefType "posted-content" @default.
- W4309757913 hasAuthorship W4309757913A5016230870 @default.
- W4309757913 hasAuthorship W4309757913A5021644000 @default.
- W4309757913 hasAuthorship W4309757913A5043383014 @default.
- W4309757913 hasAuthorship W4309757913A5081217089 @default.
- W4309757913 hasBestOaLocation W43097579131 @default.
- W4309757913 hasConcept C104317684 @default.
- W4309757913 hasConcept C105795698 @default.
- W4309757913 hasConcept C106208931 @default.
- W4309757913 hasConcept C116567970 @default.
- W4309757913 hasConcept C119857082 @default.
- W4309757913 hasConcept C124101348 @default.
- W4309757913 hasConcept C135763542 @default.
- W4309757913 hasConcept C153209595 @default.
- W4309757913 hasConcept C154945302 @default.
- W4309757913 hasConcept C169258074 @default.
- W4309757913 hasConcept C33923547 @default.
- W4309757913 hasConcept C41008148 @default.
- W4309757913 hasConcept C54355233 @default.
- W4309757913 hasConcept C60644358 @default.
- W4309757913 hasConcept C63479239 @default.
- W4309757913 hasConcept C70721500 @default.
- W4309757913 hasConcept C86803240 @default.
- W4309757913 hasConcept C96608239 @default.
- W4309757913 hasConceptScore W4309757913C104317684 @default.
- W4309757913 hasConceptScore W4309757913C105795698 @default.
- W4309757913 hasConceptScore W4309757913C106208931 @default.
- W4309757913 hasConceptScore W4309757913C116567970 @default.
- W4309757913 hasConceptScore W4309757913C119857082 @default.
- W4309757913 hasConceptScore W4309757913C124101348 @default.
- W4309757913 hasConceptScore W4309757913C135763542 @default.
- W4309757913 hasConceptScore W4309757913C153209595 @default.
- W4309757913 hasConceptScore W4309757913C154945302 @default.
- W4309757913 hasConceptScore W4309757913C169258074 @default.
- W4309757913 hasConceptScore W4309757913C33923547 @default.
- W4309757913 hasConceptScore W4309757913C41008148 @default.
- W4309757913 hasConceptScore W4309757913C54355233 @default.
- W4309757913 hasConceptScore W4309757913C60644358 @default.
- W4309757913 hasConceptScore W4309757913C63479239 @default.
- W4309757913 hasConceptScore W4309757913C70721500 @default.
- W4309757913 hasConceptScore W4309757913C86803240 @default.
- W4309757913 hasConceptScore W4309757913C96608239 @default.
- W4309757913 hasLocation W43097579131 @default.
- W4309757913 hasOpenAccess W4309757913 @default.
- W4309757913 hasPrimaryLocation W43097579131 @default.
- W4309757913 hasRelatedWork W2911455822 @default.
- W4309757913 hasRelatedWork W3116896278 @default.
- W4309757913 hasRelatedWork W3174196512 @default.
- W4309757913 hasRelatedWork W3204641204 @default.
- W4309757913 hasRelatedWork W4225360065 @default.
- W4309757913 hasRelatedWork W4282839226 @default.
- W4309757913 hasRelatedWork W4283016678 @default.
- W4309757913 hasRelatedWork W4308191010 @default.
- W4309757913 hasRelatedWork W4322727400 @default.
- W4309757913 hasRelatedWork W4323021782 @default.
- W4309757913 isParatext "false" @default.
- W4309757913 isRetracted "false" @default.
- W4309757913 workType "article" @default.