Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309762542> ?p ?o ?g. }
- W4309762542 endingPage "108990" @default.
- W4309762542 startingPage "108990" @default.
- W4309762542 abstract "With the complexity of geological conditions and corrosive environments, the evaluation of failure pressure for defective pipelines under external loads has gradually become an important part of pipeline integrity management and reliability assessment. In this study, validated, 3D, nonlinear finite element (FE) models are established. Considering the safety margin in the evaluation process of corroded pipelines, the evaluation system of triple failure pressure is proposed. Subsequently, many simulations have been carried out with validated FE models. The obtained dataset is selected for training the backpropagation neural network (BPNN) model. After hyperparameter analysis and comparison, the triple failure pressure prediction BPNN model, which is based on a 9-dimensional input layer, a 7-dimensional 180-node hidden layer and a 3-dimensional output layer, is established. Through double verification, it is considered that the established BPNN model has high accuracy in predicting the ultimate burst pressure of corroded pipelines. While rapidly predicting the ultimate burst pressure, the model can synchronously output the flow failure pressure and yield failure pressure. With the established deep learning model, the multiple failure assessment curves of defective pipelines are automatically generated within seconds, which provides a convenient evaluation reference for the defect problems encountered in practical engineering." @default.
- W4309762542 created "2022-11-29" @default.
- W4309762542 creator A5000186323 @default.
- W4309762542 creator A5004996332 @default.
- W4309762542 creator A5010433296 @default.
- W4309762542 creator A5018054686 @default.
- W4309762542 creator A5066685111 @default.
- W4309762542 creator A5068875781 @default.
- W4309762542 creator A5076139079 @default.
- W4309762542 date "2023-03-01" @default.
- W4309762542 modified "2023-10-12" @default.
- W4309762542 title "Efficient prediction method of triple failure pressure for corroded pipelines under complex loads based on a backpropagation neural network" @default.
- W4309762542 cites W1991901476 @default.
- W4309762542 cites W1994147598 @default.
- W4309762542 cites W1999123232 @default.
- W4309762542 cites W2011442263 @default.
- W4309762542 cites W2044163646 @default.
- W4309762542 cites W2110838648 @default.
- W4309762542 cites W2235090753 @default.
- W4309762542 cites W2551641893 @default.
- W4309762542 cites W2572913567 @default.
- W4309762542 cites W2620277952 @default.
- W4309762542 cites W2630191835 @default.
- W4309762542 cites W2707920326 @default.
- W4309762542 cites W2809841271 @default.
- W4309762542 cites W2883622749 @default.
- W4309762542 cites W2911793995 @default.
- W4309762542 cites W2946848950 @default.
- W4309762542 cites W2988895684 @default.
- W4309762542 cites W3095907615 @default.
- W4309762542 cites W3108198402 @default.
- W4309762542 cites W3135198812 @default.
- W4309762542 cites W3137536779 @default.
- W4309762542 cites W3162540629 @default.
- W4309762542 cites W3198669675 @default.
- W4309762542 cites W3206796450 @default.
- W4309762542 cites W3209199687 @default.
- W4309762542 cites W3211359046 @default.
- W4309762542 cites W3211509139 @default.
- W4309762542 cites W3215380826 @default.
- W4309762542 cites W4207018326 @default.
- W4309762542 cites W4210567193 @default.
- W4309762542 cites W4211131140 @default.
- W4309762542 cites W4224024907 @default.
- W4309762542 cites W4224033290 @default.
- W4309762542 cites W4280566185 @default.
- W4309762542 cites W4281256337 @default.
- W4309762542 cites W4284976256 @default.
- W4309762542 cites W4293875237 @default.
- W4309762542 cites W4294653590 @default.
- W4309762542 cites W4306179915 @default.
- W4309762542 cites W4308285397 @default.
- W4309762542 doi "https://doi.org/10.1016/j.ress.2022.108990" @default.
- W4309762542 hasPublicationYear "2023" @default.
- W4309762542 type Work @default.
- W4309762542 citedByCount "5" @default.
- W4309762542 countsByYear W43097625422023 @default.
- W4309762542 crossrefType "journal-article" @default.
- W4309762542 hasAuthorship W4309762542A5000186323 @default.
- W4309762542 hasAuthorship W4309762542A5004996332 @default.
- W4309762542 hasAuthorship W4309762542A5010433296 @default.
- W4309762542 hasAuthorship W4309762542A5018054686 @default.
- W4309762542 hasAuthorship W4309762542A5066685111 @default.
- W4309762542 hasAuthorship W4309762542A5068875781 @default.
- W4309762542 hasAuthorship W4309762542A5076139079 @default.
- W4309762542 hasConcept C121332964 @default.
- W4309762542 hasConcept C127413603 @default.
- W4309762542 hasConcept C154945302 @default.
- W4309762542 hasConcept C155032097 @default.
- W4309762542 hasConcept C158622935 @default.
- W4309762542 hasConcept C163258240 @default.
- W4309762542 hasConcept C175309249 @default.
- W4309762542 hasConcept C200601418 @default.
- W4309762542 hasConcept C41008148 @default.
- W4309762542 hasConcept C43214815 @default.
- W4309762542 hasConcept C43521106 @default.
- W4309762542 hasConcept C50644808 @default.
- W4309762542 hasConcept C62520636 @default.
- W4309762542 hasConcept C62611344 @default.
- W4309762542 hasConcept C66938386 @default.
- W4309762542 hasConcept C78519656 @default.
- W4309762542 hasConceptScore W4309762542C121332964 @default.
- W4309762542 hasConceptScore W4309762542C127413603 @default.
- W4309762542 hasConceptScore W4309762542C154945302 @default.
- W4309762542 hasConceptScore W4309762542C155032097 @default.
- W4309762542 hasConceptScore W4309762542C158622935 @default.
- W4309762542 hasConceptScore W4309762542C163258240 @default.
- W4309762542 hasConceptScore W4309762542C175309249 @default.
- W4309762542 hasConceptScore W4309762542C200601418 @default.
- W4309762542 hasConceptScore W4309762542C41008148 @default.
- W4309762542 hasConceptScore W4309762542C43214815 @default.
- W4309762542 hasConceptScore W4309762542C43521106 @default.
- W4309762542 hasConceptScore W4309762542C50644808 @default.
- W4309762542 hasConceptScore W4309762542C62520636 @default.
- W4309762542 hasConceptScore W4309762542C62611344 @default.
- W4309762542 hasConceptScore W4309762542C66938386 @default.
- W4309762542 hasConceptScore W4309762542C78519656 @default.
- W4309762542 hasFunder F4320321001 @default.