Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309763963> ?p ?o ?g. }
- W4309763963 endingPage "100628" @default.
- W4309763963 startingPage "100628" @default.
- W4309763963 abstract "•Advanced liver fibrosis is the main determinant of mortality in patients with NASH.•Non-hepatocyte pSTAT3 in NAFLD liver biopsies correlated with fibrosis severity, inflammation and progression to NASH.•PSTAT3 was enriched in HPCs and SECs as determined by digital spatial profiling of NASH biopsies.•STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, Kupffer cells and plasmacytoid DCs.•In conclusion, STAT3 activation in HPCs results in their expansion and may mediate fibrogenesis in NAFLD. Background & AimsThe prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice.MethodsHere, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion.ConclusionIncreased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches.Impact and implicationsAdvanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD. The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers. Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches." @default.
- W4309763963 created "2022-11-29" @default.
- W4309763963 creator A5058791633 @default.
- W4309763963 creator A5062181429 @default.
- W4309763963 creator A5065502392 @default.
- W4309763963 creator A5071331596 @default.
- W4309763963 creator A5072231227 @default.
- W4309763963 creator A5079077130 @default.
- W4309763963 creator A5088743283 @default.
- W4309763963 creator A5090737003 @default.
- W4309763963 date "2023-02-01" @default.
- W4309763963 modified "2023-09-25" @default.
- W4309763963 title "Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease" @default.
- W4309763963 cites W1626349769 @default.
- W4309763963 cites W1991013609 @default.
- W4309763963 cites W2000799034 @default.
- W4309763963 cites W2004235434 @default.
- W4309763963 cites W2005119615 @default.
- W4309763963 cites W2007868505 @default.
- W4309763963 cites W2050345976 @default.
- W4309763963 cites W2051552954 @default.
- W4309763963 cites W2067740038 @default.
- W4309763963 cites W2071074877 @default.
- W4309763963 cites W2084976438 @default.
- W4309763963 cites W2090158969 @default.
- W4309763963 cites W2111356783 @default.
- W4309763963 cites W2116609639 @default.
- W4309763963 cites W2143819289 @default.
- W4309763963 cites W2156319762 @default.
- W4309763963 cites W2168104158 @default.
- W4309763963 cites W2170011016 @default.
- W4309763963 cites W2203341275 @default.
- W4309763963 cites W2252222927 @default.
- W4309763963 cites W2256103742 @default.
- W4309763963 cites W2517731270 @default.
- W4309763963 cites W2580009538 @default.
- W4309763963 cites W2585223803 @default.
- W4309763963 cites W2618875352 @default.
- W4309763963 cites W2742058415 @default.
- W4309763963 cites W2788348358 @default.
- W4309763963 cites W2790504396 @default.
- W4309763963 cites W2799461677 @default.
- W4309763963 cites W2890778790 @default.
- W4309763963 cites W2892273868 @default.
- W4309763963 cites W2896518632 @default.
- W4309763963 cites W2898404101 @default.
- W4309763963 cites W2909111726 @default.
- W4309763963 cites W2966059605 @default.
- W4309763963 cites W2970782573 @default.
- W4309763963 cites W2979595830 @default.
- W4309763963 cites W2995095694 @default.
- W4309763963 cites W3003361050 @default.
- W4309763963 cites W3009052374 @default.
- W4309763963 cites W3034691659 @default.
- W4309763963 cites W3154897461 @default.
- W4309763963 cites W3195206517 @default.
- W4309763963 cites W3198999861 @default.
- W4309763963 cites W3203485294 @default.
- W4309763963 cites W358938369 @default.
- W4309763963 cites W4210729902 @default.
- W4309763963 cites W4214669465 @default.
- W4309763963 cites W4224075646 @default.
- W4309763963 doi "https://doi.org/10.1016/j.jhepr.2022.100628" @default.
- W4309763963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36687470" @default.
- W4309763963 hasPublicationYear "2023" @default.
- W4309763963 type Work @default.
- W4309763963 citedByCount "4" @default.
- W4309763963 countsByYear W43097639632023 @default.
- W4309763963 crossrefType "journal-article" @default.
- W4309763963 hasAuthorship W4309763963A5058791633 @default.
- W4309763963 hasAuthorship W4309763963A5062181429 @default.
- W4309763963 hasAuthorship W4309763963A5065502392 @default.
- W4309763963 hasAuthorship W4309763963A5071331596 @default.
- W4309763963 hasAuthorship W4309763963A5072231227 @default.
- W4309763963 hasAuthorship W4309763963A5079077130 @default.
- W4309763963 hasAuthorship W4309763963A5088743283 @default.
- W4309763963 hasAuthorship W4309763963A5090737003 @default.
- W4309763963 hasBestOaLocation W43097639631 @default.
- W4309763963 hasConcept C126322002 @default.
- W4309763963 hasConcept C142724271 @default.
- W4309763963 hasConcept C202751555 @default.
- W4309763963 hasConcept C2776200302 @default.
- W4309763963 hasConcept C2777075537 @default.
- W4309763963 hasConcept C2777214474 @default.
- W4309763963 hasConcept C2778019345 @default.
- W4309763963 hasConcept C2778772119 @default.
- W4309763963 hasConcept C2778923194 @default.
- W4309763963 hasConcept C2779102576 @default.
- W4309763963 hasConcept C2779134260 @default.
- W4309763963 hasConcept C2779478299 @default.
- W4309763963 hasConcept C2780559512 @default.
- W4309763963 hasConcept C502942594 @default.
- W4309763963 hasConcept C55493867 @default.
- W4309763963 hasConcept C62478195 @default.
- W4309763963 hasConcept C71924100 @default.
- W4309763963 hasConcept C86803240 @default.
- W4309763963 hasConceptScore W4309763963C126322002 @default.
- W4309763963 hasConceptScore W4309763963C142724271 @default.