Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309764145> ?p ?o ?g. }
- W4309764145 endingPage "102698" @default.
- W4309764145 startingPage "102698" @default.
- W4309764145 abstract "Recent studies have shown that multimodal neuroimaging data provide complementary information of the brain and latent space-based methods have achieved promising results in fusing multimodal data for Alzheimer's disease (AD) diagnosis. However, most existing methods treat all features equally and adopt nonorthogonal projections to learn the latent space, which cannot retain enough discriminative information in the latent space. Besides, they usually preserve the relationships among subjects in the latent space based on the similarity graph constructed on original features for performance boosting. However, the noises and redundant features significantly corrupt the graph. To address these limitations, we propose an Orthogonal Latent space learning with Feature weighting and Graph learning (OLFG) model for multimodal AD diagnosis. Specifically, we map multiple modalities into a common latent space by orthogonal constrained projection to capture the discriminative information for AD diagnosis. Then, a feature weighting matrix is utilized to sort the importance of features in AD diagnosis adaptively. Besides, we devise a regularization term with learned graph to preserve the local structure of the data in the latent space and integrate the graph construction into the learning processing for accurately encoding the relationships among samples. Instead of constructing a similarity graph for each modality, we learn a joint graph for multiple modalities to capture the correlations among modalities. Finally, the representations in the latent space are projected into the target space to perform AD diagnosis. An alternating optimization algorithm with proved convergence is developed to solve the optimization objective. Extensive experimental results show the effectiveness of the proposed method." @default.
- W4309764145 created "2022-11-29" @default.
- W4309764145 creator A5023874610 @default.
- W4309764145 creator A5046989798 @default.
- W4309764145 creator A5053869712 @default.
- W4309764145 creator A5076593274 @default.
- W4309764145 date "2023-02-01" @default.
- W4309764145 modified "2023-10-03" @default.
- W4309764145 title "Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis" @default.
- W4309764145 cites W1543878663 @default.
- W4309764145 cites W1587740805 @default.
- W4309764145 cites W1872034074 @default.
- W4309764145 cites W1967082239 @default.
- W4309764145 cites W1978763244 @default.
- W4309764145 cites W1983655753 @default.
- W4309764145 cites W1985612893 @default.
- W4309764145 cites W2001477615 @default.
- W4309764145 cites W2016228161 @default.
- W4309764145 cites W2038899746 @default.
- W4309764145 cites W2046024437 @default.
- W4309764145 cites W2093602450 @default.
- W4309764145 cites W2109222450 @default.
- W4309764145 cites W2137730858 @default.
- W4309764145 cites W2167840686 @default.
- W4309764145 cites W2175191116 @default.
- W4309764145 cites W2286206973 @default.
- W4309764145 cites W2335671454 @default.
- W4309764145 cites W2467160851 @default.
- W4309764145 cites W2555500380 @default.
- W4309764145 cites W2569859441 @default.
- W4309764145 cites W2574038793 @default.
- W4309764145 cites W2574356929 @default.
- W4309764145 cites W2611281735 @default.
- W4309764145 cites W2740207465 @default.
- W4309764145 cites W2755335783 @default.
- W4309764145 cites W2761142084 @default.
- W4309764145 cites W2765668319 @default.
- W4309764145 cites W2784313390 @default.
- W4309764145 cites W281036081 @default.
- W4309764145 cites W2893652381 @default.
- W4309764145 cites W2900135865 @default.
- W4309764145 cites W2916257687 @default.
- W4309764145 cites W2923917921 @default.
- W4309764145 cites W2928936484 @default.
- W4309764145 cites W2937824874 @default.
- W4309764145 cites W2942489367 @default.
- W4309764145 cites W2955147859 @default.
- W4309764145 cites W2960986212 @default.
- W4309764145 cites W2968533460 @default.
- W4309764145 cites W2991909137 @default.
- W4309764145 cites W2995495466 @default.
- W4309764145 cites W2998710796 @default.
- W4309764145 cites W3008078877 @default.
- W4309764145 cites W3012174479 @default.
- W4309764145 cites W3031176687 @default.
- W4309764145 cites W3082960444 @default.
- W4309764145 cites W3083682961 @default.
- W4309764145 cites W3087050764 @default.
- W4309764145 cites W3088567733 @default.
- W4309764145 cites W3098394437 @default.
- W4309764145 cites W3134105939 @default.
- W4309764145 cites W4210493947 @default.
- W4309764145 cites W4211021745 @default.
- W4309764145 cites W4288808204 @default.
- W4309764145 cites W4312436424 @default.
- W4309764145 cites W655089533 @default.
- W4309764145 doi "https://doi.org/10.1016/j.media.2022.102698" @default.
- W4309764145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36462372" @default.
- W4309764145 hasPublicationYear "2023" @default.
- W4309764145 type Work @default.
- W4309764145 citedByCount "2" @default.
- W4309764145 countsByYear W43097641452023 @default.
- W4309764145 crossrefType "journal-article" @default.
- W4309764145 hasAuthorship W4309764145A5023874610 @default.
- W4309764145 hasAuthorship W4309764145A5046989798 @default.
- W4309764145 hasAuthorship W4309764145A5053869712 @default.
- W4309764145 hasAuthorship W4309764145A5076593274 @default.
- W4309764145 hasConcept C112933361 @default.
- W4309764145 hasConcept C119857082 @default.
- W4309764145 hasConcept C126838900 @default.
- W4309764145 hasConcept C132525143 @default.
- W4309764145 hasConcept C153180895 @default.
- W4309764145 hasConcept C154945302 @default.
- W4309764145 hasConcept C183115368 @default.
- W4309764145 hasConcept C41008148 @default.
- W4309764145 hasConcept C59404180 @default.
- W4309764145 hasConcept C71924100 @default.
- W4309764145 hasConcept C80444323 @default.
- W4309764145 hasConcept C83665646 @default.
- W4309764145 hasConcept C97931131 @default.
- W4309764145 hasConceptScore W4309764145C112933361 @default.
- W4309764145 hasConceptScore W4309764145C119857082 @default.
- W4309764145 hasConceptScore W4309764145C126838900 @default.
- W4309764145 hasConceptScore W4309764145C132525143 @default.
- W4309764145 hasConceptScore W4309764145C153180895 @default.
- W4309764145 hasConceptScore W4309764145C154945302 @default.
- W4309764145 hasConceptScore W4309764145C183115368 @default.
- W4309764145 hasConceptScore W4309764145C41008148 @default.