Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309766472> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4309766472 endingPage "035902" @default.
- W4309766472 startingPage "035902" @default.
- W4309766472 abstract "Abstract Auto-encoder (AE)-based condition monitoring (CM) methods for fault detection of wind turbines have received considerable attention due to their powerful feature extraction ability. However, traditional AE-based monitoring methods can only learn point-to-point features by minimizing reconstruction errors, which leads to a low sensitivity to anomaly data and weak robustness to noise data. To this end, we introduce a novel deep generative method based on the convolutional neural network (CNN)-conditional variational auto-encoder (CVAE). The key idea of CNN-CVAE is to unify the representation learning capacity of the CVAE and CNN. Specifically, CVAE can learn a probability distribution model by being trained on an anomaly-free supervisory control and data acquisition systems (SCADA) dataset; CNN and deconvolution operations are adopted for better time-series feature extraction and reconstruction performance. A statistical process control chart is applied to determine the alarm threshold. The effectiveness of the CNN-CVAE-based method is validated by datasets collected by SCADA installed in a commercial wind farm in China for impending blade breakage and gearbox failure. Abundant experiments with state-of-the-art deep learning-based CM methods are conducted, which indicate that our proposed method outperforms other methods in robustness, fault detection data sensitivity, fault warning time, and model parameters." @default.
- W4309766472 created "2022-11-29" @default.
- W4309766472 creator A5005400963 @default.
- W4309766472 creator A5045656317 @default.
- W4309766472 creator A5076208041 @default.
- W4309766472 creator A5082835432 @default.
- W4309766472 creator A5086080651 @default.
- W4309766472 creator A5090045997 @default.
- W4309766472 date "2022-12-06" @default.
- W4309766472 modified "2023-10-15" @default.
- W4309766472 title "A deep generative model based on CNN-CVAE for wind turbine condition monitoring" @default.
- W4309766472 cites W1605077306 @default.
- W4309766472 cites W1823375394 @default.
- W4309766472 cites W1918349052 @default.
- W4309766472 cites W1965190885 @default.
- W4309766472 cites W2037411704 @default.
- W4309766472 cites W2517756674 @default.
- W4309766472 cites W2535095268 @default.
- W4309766472 cites W2761148314 @default.
- W4309766472 cites W2801050875 @default.
- W4309766472 cites W2810444707 @default.
- W4309766472 cites W2884367402 @default.
- W4309766472 cites W2891859208 @default.
- W4309766472 cites W2895016144 @default.
- W4309766472 cites W2896784509 @default.
- W4309766472 cites W2897250207 @default.
- W4309766472 cites W2911312349 @default.
- W4309766472 cites W2919115771 @default.
- W4309766472 cites W2927695619 @default.
- W4309766472 cites W2953885557 @default.
- W4309766472 cites W2999516673 @default.
- W4309766472 cites W3028206171 @default.
- W4309766472 cites W3045155079 @default.
- W4309766472 cites W3101380508 @default.
- W4309766472 cites W3106583357 @default.
- W4309766472 cites W3134397144 @default.
- W4309766472 cites W3138430000 @default.
- W4309766472 cites W3140699518 @default.
- W4309766472 cites W3159913937 @default.
- W4309766472 cites W3165861921 @default.
- W4309766472 cites W3184853819 @default.
- W4309766472 cites W3216117309 @default.
- W4309766472 doi "https://doi.org/10.1088/1361-6501/aca496" @default.
- W4309766472 hasPublicationYear "2022" @default.
- W4309766472 type Work @default.
- W4309766472 citedByCount "6" @default.
- W4309766472 countsByYear W43097664722023 @default.
- W4309766472 crossrefType "journal-article" @default.
- W4309766472 hasAuthorship W4309766472A5005400963 @default.
- W4309766472 hasAuthorship W4309766472A5045656317 @default.
- W4309766472 hasAuthorship W4309766472A5076208041 @default.
- W4309766472 hasAuthorship W4309766472A5082835432 @default.
- W4309766472 hasAuthorship W4309766472A5086080651 @default.
- W4309766472 hasAuthorship W4309766472A5090045997 @default.
- W4309766472 hasConcept C104317684 @default.
- W4309766472 hasConcept C119857082 @default.
- W4309766472 hasConcept C153180895 @default.
- W4309766472 hasConcept C154945302 @default.
- W4309766472 hasConcept C185592680 @default.
- W4309766472 hasConcept C41008148 @default.
- W4309766472 hasConcept C55493867 @default.
- W4309766472 hasConcept C63479239 @default.
- W4309766472 hasConcept C739882 @default.
- W4309766472 hasConcept C81363708 @default.
- W4309766472 hasConceptScore W4309766472C104317684 @default.
- W4309766472 hasConceptScore W4309766472C119857082 @default.
- W4309766472 hasConceptScore W4309766472C153180895 @default.
- W4309766472 hasConceptScore W4309766472C154945302 @default.
- W4309766472 hasConceptScore W4309766472C185592680 @default.
- W4309766472 hasConceptScore W4309766472C41008148 @default.
- W4309766472 hasConceptScore W4309766472C55493867 @default.
- W4309766472 hasConceptScore W4309766472C63479239 @default.
- W4309766472 hasConceptScore W4309766472C739882 @default.
- W4309766472 hasConceptScore W4309766472C81363708 @default.
- W4309766472 hasIssue "3" @default.
- W4309766472 hasLocation W43097664721 @default.
- W4309766472 hasOpenAccess W4309766472 @default.
- W4309766472 hasPrimaryLocation W43097664721 @default.
- W4309766472 hasRelatedWork W2076520961 @default.
- W4309766472 hasRelatedWork W2175746458 @default.
- W4309766472 hasRelatedWork W2732542196 @default.
- W4309766472 hasRelatedWork W2760085659 @default.
- W4309766472 hasRelatedWork W3024637412 @default.
- W4309766472 hasRelatedWork W3027997911 @default.
- W4309766472 hasRelatedWork W3081496756 @default.
- W4309766472 hasRelatedWork W3093612317 @default.
- W4309766472 hasRelatedWork W3213778687 @default.
- W4309766472 hasRelatedWork W4287776258 @default.
- W4309766472 hasVolume "34" @default.
- W4309766472 isParatext "false" @default.
- W4309766472 isRetracted "false" @default.
- W4309766472 workType "article" @default.