Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309769691> ?p ?o ?g. }
- W4309769691 endingPage "420" @default.
- W4309769691 startingPage "405" @default.
- W4309769691 abstract "The current study deals with the depth of scour at the location of impact between a free fall jet and a riverbed. The current study is based on extensive laboratory experiments that were designed to mimic full-scale behavior. The literature review shows that relations among hydraulic parameters for predicting the depth of scour are complex; therefore, six artificial intelligence techniques are used in the current study to capture these complex relation. A total of 120 observations are used for the analysis. Results from the experiments show that with increasing downstream water depth (h), the impinging jet causes increasingly turbulent currents and large vortices that increase the scouring of the riverbed. Increasing discharge per unit width (q) enhances the relative scour depth (D/H) while increasing the average diameter of the riverbed materials (d) decreases D/H, where D is maximum scour depth and H is the height of the falling jet. With increasing (particle Froude number Fr), the relative scour depth increases. In the current study the prediction accuracy of Gene Expression Programming (GEP), Multivariate Adaptive Regression Spline (MARS), M5P Tree, Random Forest (RF), Random Tree (RT), and Reduces Error Pruning Tree (REP Tree) techniques are evaluated using the relative scour depth (D/(H−h)). The performance evaluation indices and graphical methods suggest that the GEP based model is more accurate than other prediction methods for the relative scour depth with a coefficient of determination (R2) equal to 0.8330 and 0.8270, a mean absolute error (MAE) equal to 0.1125 and 0.0902, root mean square error (RMSE) values of 0.1463 and 0.1116, and Willmott's Index (WI) equal to 0.8998 and 0.9014, for the training and testing stages." @default.
- W4309769691 created "2022-11-29" @default.
- W4309769691 creator A5002897033 @default.
- W4309769691 creator A5009861962 @default.
- W4309769691 creator A5020118515 @default.
- W4309769691 creator A5038998119 @default.
- W4309769691 date "2023-06-01" @default.
- W4309769691 modified "2023-10-16" @default.
- W4309769691 title "Experimental investigation and prediction of free fall jet scouring using machine learning models" @default.
- W4309769691 cites W134897607 @default.
- W4309769691 cites W1955209066 @default.
- W4309769691 cites W1967046785 @default.
- W4309769691 cites W1971595636 @default.
- W4309769691 cites W1980225742 @default.
- W4309769691 cites W1985479415 @default.
- W4309769691 cites W1986828744 @default.
- W4309769691 cites W1996642912 @default.
- W4309769691 cites W2006827355 @default.
- W4309769691 cites W2026190873 @default.
- W4309769691 cites W2034328304 @default.
- W4309769691 cites W2037460094 @default.
- W4309769691 cites W2038471727 @default.
- W4309769691 cites W2041619882 @default.
- W4309769691 cites W2047884674 @default.
- W4309769691 cites W2052963343 @default.
- W4309769691 cites W2063398360 @default.
- W4309769691 cites W2064075383 @default.
- W4309769691 cites W2070010372 @default.
- W4309769691 cites W2093470757 @default.
- W4309769691 cites W2111286455 @default.
- W4309769691 cites W2111531449 @default.
- W4309769691 cites W2122149880 @default.
- W4309769691 cites W2122225559 @default.
- W4309769691 cites W2128420091 @default.
- W4309769691 cites W2144621220 @default.
- W4309769691 cites W2154435799 @default.
- W4309769691 cites W2172195373 @default.
- W4309769691 cites W2241420790 @default.
- W4309769691 cites W2305903635 @default.
- W4309769691 cites W2513291079 @default.
- W4309769691 cites W2536388881 @default.
- W4309769691 cites W2594923324 @default.
- W4309769691 cites W2761895267 @default.
- W4309769691 cites W2784239585 @default.
- W4309769691 cites W2789635809 @default.
- W4309769691 cites W2800224332 @default.
- W4309769691 cites W2892145319 @default.
- W4309769691 cites W2911964244 @default.
- W4309769691 cites W2914569607 @default.
- W4309769691 cites W3000450789 @default.
- W4309769691 cites W3009500911 @default.
- W4309769691 cites W3091821634 @default.
- W4309769691 cites W3112945380 @default.
- W4309769691 cites W3119234978 @default.
- W4309769691 cites W3120346372 @default.
- W4309769691 cites W3122484092 @default.
- W4309769691 cites W3188626282 @default.
- W4309769691 cites W4206964956 @default.
- W4309769691 cites W4210794288 @default.
- W4309769691 cites W4212881659 @default.
- W4309769691 cites W4212883601 @default.
- W4309769691 doi "https://doi.org/10.1016/j.ijsrc.2022.11.004" @default.
- W4309769691 hasPublicationYear "2023" @default.
- W4309769691 type Work @default.
- W4309769691 citedByCount "1" @default.
- W4309769691 countsByYear W43097696912023 @default.
- W4309769691 crossrefType "journal-article" @default.
- W4309769691 hasAuthorship W4309769691A5002897033 @default.
- W4309769691 hasAuthorship W4309769691A5009861962 @default.
- W4309769691 hasAuthorship W4309769691A5020118515 @default.
- W4309769691 hasAuthorship W4309769691A5038998119 @default.
- W4309769691 hasConcept C111368507 @default.
- W4309769691 hasConcept C113174947 @default.
- W4309769691 hasConcept C119947313 @default.
- W4309769691 hasConcept C121332964 @default.
- W4309769691 hasConcept C127313418 @default.
- W4309769691 hasConcept C134306372 @default.
- W4309769691 hasConcept C148043351 @default.
- W4309769691 hasConcept C187320778 @default.
- W4309769691 hasConcept C206835866 @default.
- W4309769691 hasConcept C2524010 @default.
- W4309769691 hasConcept C33923547 @default.
- W4309769691 hasConcept C38349280 @default.
- W4309769691 hasConcept C57879066 @default.
- W4309769691 hasConcept C76886044 @default.
- W4309769691 hasConceptScore W4309769691C111368507 @default.
- W4309769691 hasConceptScore W4309769691C113174947 @default.
- W4309769691 hasConceptScore W4309769691C119947313 @default.
- W4309769691 hasConceptScore W4309769691C121332964 @default.
- W4309769691 hasConceptScore W4309769691C127313418 @default.
- W4309769691 hasConceptScore W4309769691C134306372 @default.
- W4309769691 hasConceptScore W4309769691C148043351 @default.
- W4309769691 hasConceptScore W4309769691C187320778 @default.
- W4309769691 hasConceptScore W4309769691C206835866 @default.
- W4309769691 hasConceptScore W4309769691C2524010 @default.
- W4309769691 hasConceptScore W4309769691C33923547 @default.
- W4309769691 hasConceptScore W4309769691C38349280 @default.
- W4309769691 hasConceptScore W4309769691C57879066 @default.