Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309769905> ?p ?o ?g. }
- W4309769905 abstract "Streamflow deficit (hydrological drought) poses a large risk to water resources management, agricultural production, water supply, hydropower generation, and ecosystem services. Reliable and robust hydrological drought predictions are critical for water and food security and ecosystem health under anthropogenic warming. However, the prevalent statistical prediction methods, for example, the meta-Gaussian (MG) model, usually do not lead to accurate drought predictions. We therefore developed a new drought prediction model utilizing the Bayesian Model Averaging coupled with Vine Copula, called Bayesian Model Averaging Ensemble Vine Copula (BMAViC) model, in which previous meteorological drought, antecedent evaporative drought, and preceding hydrological drought were selected as three predictors. The BMAViC model was applied to the Upper Yellow River basin and showed robust skills during calibration and validation periods for 1- to 3-month lead hydrological drought predictions. In comparison with the MG model (reference model), the skills of the proposed model were relatively stable and superior under diverse lead times. Good performances under the 1- to 3-month lead times strongly implied that the BMAViC model yielded robust and accurate hydrological drought predictions. The study results enhance our confidence in seasonal drought prediction and help us understand drought dynamics in future months." @default.
- W4309769905 created "2022-11-29" @default.
- W4309769905 creator A5015768486 @default.
- W4309769905 creator A5036763100 @default.
- W4309769905 creator A5065442873 @default.
- W4309769905 creator A5088568727 @default.
- W4309769905 date "2022-11-01" @default.
- W4309769905 modified "2023-10-16" @default.
- W4309769905 title "Predicting Hydrological Drought With Bayesian Model Averaging Ensemble Vine Copula (BMAViC) Model" @default.
- W4309769905 cites W1527594523 @default.
- W4309769905 cites W1544662260 @default.
- W4309769905 cites W1823692044 @default.
- W4309769905 cites W1987213677 @default.
- W4309769905 cites W1990471334 @default.
- W4309769905 cites W1990779154 @default.
- W4309769905 cites W1992105816 @default.
- W4309769905 cites W1994403842 @default.
- W4309769905 cites W2000502470 @default.
- W4309769905 cites W2004484179 @default.
- W4309769905 cites W2028062173 @default.
- W4309769905 cites W2048089440 @default.
- W4309769905 cites W2052605703 @default.
- W4309769905 cites W2074407461 @default.
- W4309769905 cites W2075648616 @default.
- W4309769905 cites W2081652617 @default.
- W4309769905 cites W2086298205 @default.
- W4309769905 cites W2088316415 @default.
- W4309769905 cites W2102441298 @default.
- W4309769905 cites W2137446795 @default.
- W4309769905 cites W2156588169 @default.
- W4309769905 cites W2158840489 @default.
- W4309769905 cites W2166223539 @default.
- W4309769905 cites W2469711654 @default.
- W4309769905 cites W2523233351 @default.
- W4309769905 cites W2528492999 @default.
- W4309769905 cites W2564079402 @default.
- W4309769905 cites W2564176189 @default.
- W4309769905 cites W2592514856 @default.
- W4309769905 cites W2594402498 @default.
- W4309769905 cites W2784513399 @default.
- W4309769905 cites W2794769690 @default.
- W4309769905 cites W2909524589 @default.
- W4309769905 cites W2911693249 @default.
- W4309769905 cites W2961799599 @default.
- W4309769905 cites W2965726976 @default.
- W4309769905 cites W2968413683 @default.
- W4309769905 cites W2982465984 @default.
- W4309769905 cites W3004343334 @default.
- W4309769905 cites W3006264628 @default.
- W4309769905 cites W3011216618 @default.
- W4309769905 cites W3017132868 @default.
- W4309769905 cites W3017207320 @default.
- W4309769905 cites W3081479206 @default.
- W4309769905 cites W3084210213 @default.
- W4309769905 cites W3112748572 @default.
- W4309769905 cites W3130635378 @default.
- W4309769905 cites W3160650850 @default.
- W4309769905 cites W3161752541 @default.
- W4309769905 cites W3180664537 @default.
- W4309769905 cites W3186716410 @default.
- W4309769905 cites W3187558905 @default.
- W4309769905 cites W3196846362 @default.
- W4309769905 cites W3199896535 @default.
- W4309769905 cites W3203696868 @default.
- W4309769905 cites W3207093863 @default.
- W4309769905 cites W4200134619 @default.
- W4309769905 cites W4200376791 @default.
- W4309769905 cites W4200414142 @default.
- W4309769905 cites W4200493553 @default.
- W4309769905 cites W4212959311 @default.
- W4309769905 cites W4221112673 @default.
- W4309769905 cites W4221122472 @default.
- W4309769905 cites W4280543502 @default.
- W4309769905 cites W4280651561 @default.
- W4309769905 cites W4286716212 @default.
- W4309769905 doi "https://doi.org/10.1029/2022wr033146" @default.
- W4309769905 hasPublicationYear "2022" @default.
- W4309769905 type Work @default.
- W4309769905 citedByCount "2" @default.
- W4309769905 countsByYear W43097699052023 @default.
- W4309769905 crossrefType "journal-article" @default.
- W4309769905 hasAuthorship W4309769905A5015768486 @default.
- W4309769905 hasAuthorship W4309769905A5036763100 @default.
- W4309769905 hasAuthorship W4309769905A5065442873 @default.
- W4309769905 hasAuthorship W4309769905A5088568727 @default.
- W4309769905 hasConcept C105795698 @default.
- W4309769905 hasConcept C107673813 @default.
- W4309769905 hasConcept C126645576 @default.
- W4309769905 hasConcept C127313418 @default.
- W4309769905 hasConcept C149782125 @default.
- W4309769905 hasConcept C153823671 @default.
- W4309769905 hasConcept C160234255 @default.
- W4309769905 hasConcept C17618745 @default.
- W4309769905 hasConcept C187320778 @default.
- W4309769905 hasConcept C18903297 @default.
- W4309769905 hasConcept C205649164 @default.
- W4309769905 hasConcept C2779676228 @default.
- W4309769905 hasConcept C33923547 @default.
- W4309769905 hasConcept C39432304 @default.
- W4309769905 hasConcept C49204034 @default.