Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309773947> ?p ?o ?g. }
- W4309773947 endingPage "108922" @default.
- W4309773947 startingPage "108922" @default.
- W4309773947 abstract "Laser micro-machining has gained significant attraction from industries and researchers due to the wide range of processability and material flexibility with micro-scale accuracy. However, only a few process variables and soft computing approaches are taken into consideration in micro-scale sectors. This provides the opportunity to explore a new and relatively unexplored area of physics-informed advanced soft computing techniques for laser beam machining. This study aims to develop a framework to investigate the micro-milling capabilities of 10 mm thick poly-methyl-methacrylate (PMMA) using various input parameters such as laser power (8–16 W), scanning speed (25–50 mm/s), number of passes (2–6), and incident energy (0.107–0.64 J/mm). A soft computing technique to build depth, width and surface roughness prediction models on a CO2 laser machine, is presented. Advanced soft computing approaches such as random forest, gradient boost, ridge regression, linear regression, support vector regression and gaussian process regression are evaluated to predict the microchannel's depth, surface roughness, and kerf width. The proposed work is validated experimentally and compared with the different prediction/regression models available in the literature. The values of hyper tuning parameters are optimized using by grid search method. Based on the 5-fold cross-validation analysis, the most accurate predictions of the depth, surface roughness and kerf width could be achieved through the gaussian process regression (GPR) model with highest accuracy of 98.34 %, 97.68 % and 96.38 % for depth, surface roughness and kerf width respectively." @default.
- W4309773947 created "2022-11-29" @default.
- W4309773947 creator A5000523693 @default.
- W4309773947 creator A5007509185 @default.
- W4309773947 creator A5080531945 @default.
- W4309773947 date "2023-02-01" @default.
- W4309773947 modified "2023-10-18" @default.
- W4309773947 title "Experimental investigations and modeling for multi-pass laser micro-milling by soft computing-physics informed machine learning on PMMA sheet using CO2 laser" @default.
- W4309773947 cites W1978316128 @default.
- W4309773947 cites W2011382474 @default.
- W4309773947 cites W2030462641 @default.
- W4309773947 cites W2052939368 @default.
- W4309773947 cites W2068477896 @default.
- W4309773947 cites W2077993830 @default.
- W4309773947 cites W2411901262 @default.
- W4309773947 cites W2478523502 @default.
- W4309773947 cites W2479954349 @default.
- W4309773947 cites W2492821097 @default.
- W4309773947 cites W2505689515 @default.
- W4309773947 cites W2520778799 @default.
- W4309773947 cites W2579358533 @default.
- W4309773947 cites W2589762483 @default.
- W4309773947 cites W2591890471 @default.
- W4309773947 cites W2621381978 @default.
- W4309773947 cites W2624539917 @default.
- W4309773947 cites W2797787970 @default.
- W4309773947 cites W2829664241 @default.
- W4309773947 cites W2886996353 @default.
- W4309773947 cites W2888496071 @default.
- W4309773947 cites W2889250342 @default.
- W4309773947 cites W2900272252 @default.
- W4309773947 cites W2916390020 @default.
- W4309773947 cites W2922242326 @default.
- W4309773947 cites W2939593825 @default.
- W4309773947 cites W2953627834 @default.
- W4309773947 cites W2954873790 @default.
- W4309773947 cites W2965228093 @default.
- W4309773947 cites W2976336048 @default.
- W4309773947 cites W2983410304 @default.
- W4309773947 cites W3000176315 @default.
- W4309773947 cites W3038447340 @default.
- W4309773947 cites W3045387640 @default.
- W4309773947 cites W3089323246 @default.
- W4309773947 cites W3118451531 @default.
- W4309773947 cites W3131497017 @default.
- W4309773947 cites W3134844411 @default.
- W4309773947 cites W3139242561 @default.
- W4309773947 cites W3141354019 @default.
- W4309773947 cites W3141537781 @default.
- W4309773947 cites W3159781293 @default.
- W4309773947 cites W3167986843 @default.
- W4309773947 cites W3182076354 @default.
- W4309773947 cites W3185500037 @default.
- W4309773947 cites W3186645331 @default.
- W4309773947 cites W3193590374 @default.
- W4309773947 cites W3194250276 @default.
- W4309773947 cites W3201080107 @default.
- W4309773947 cites W3216229600 @default.
- W4309773947 cites W3217164963 @default.
- W4309773947 cites W4200123582 @default.
- W4309773947 cites W4206064002 @default.
- W4309773947 cites W4206714203 @default.
- W4309773947 cites W4210483269 @default.
- W4309773947 cites W4220905935 @default.
- W4309773947 cites W795205871 @default.
- W4309773947 doi "https://doi.org/10.1016/j.optlastec.2022.108922" @default.
- W4309773947 hasPublicationYear "2023" @default.
- W4309773947 type Work @default.
- W4309773947 citedByCount "5" @default.
- W4309773947 countsByYear W43097739472023 @default.
- W4309773947 crossrefType "journal-article" @default.
- W4309773947 hasAuthorship W4309773947A5000523693 @default.
- W4309773947 hasAuthorship W4309773947A5007509185 @default.
- W4309773947 hasAuthorship W4309773947A5080531945 @default.
- W4309773947 hasConcept C107365816 @default.
- W4309773947 hasConcept C11413529 @default.
- W4309773947 hasConcept C119857082 @default.
- W4309773947 hasConcept C120665830 @default.
- W4309773947 hasConcept C121332964 @default.
- W4309773947 hasConcept C127413603 @default.
- W4309773947 hasConcept C140073362 @default.
- W4309773947 hasConcept C159985019 @default.
- W4309773947 hasConcept C163716315 @default.
- W4309773947 hasConcept C192562407 @default.
- W4309773947 hasConcept C200649887 @default.
- W4309773947 hasConcept C41008148 @default.
- W4309773947 hasConcept C50644808 @default.
- W4309773947 hasConcept C520434653 @default.
- W4309773947 hasConcept C523214423 @default.
- W4309773947 hasConcept C61326573 @default.
- W4309773947 hasConcept C62520636 @default.
- W4309773947 hasConcept C71039073 @default.
- W4309773947 hasConcept C78519656 @default.
- W4309773947 hasConceptScore W4309773947C107365816 @default.
- W4309773947 hasConceptScore W4309773947C11413529 @default.
- W4309773947 hasConceptScore W4309773947C119857082 @default.
- W4309773947 hasConceptScore W4309773947C120665830 @default.
- W4309773947 hasConceptScore W4309773947C121332964 @default.