Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309774299> ?p ?o ?g. }
- W4309774299 endingPage "120307" @default.
- W4309774299 startingPage "120307" @default.
- W4309774299 abstract "An accurate aging forecasting and state of health estimation is essential for a safe and economically valuable usage of lithium-ion batteries. However, the non-linear aging of lithium-ion batteries is dependent on various operating and environmental conditions wherefore the degradation estimation is a complex challenge. Moreover, for on-board estimations where only limited memory and computing power are available, a state of health estimation algorithm is needed that is able to process raw sensor data without complex preprocessing. This paper presents a data-driven state of health estimation algorithm for lithium-ion batteries using different segments of partial discharge profiles. Raw sensor data is directly input to a temporal convolutional neural network without the need of executing feature engineering steps. The neural network is able to process raw sensor data and estimate the state of health of battery cells for different aging and degradation scenarios. After executing Bayesian hyperparameter tuning together with a stratified cross validation approach for splitting the training and test data, the achieved generalized aging model estimates the state of health with an overall root mean squared error of 1.0%." @default.
- W4309774299 created "2022-11-29" @default.
- W4309774299 creator A5014539824 @default.
- W4309774299 creator A5026340847 @default.
- W4309774299 creator A5026923870 @default.
- W4309774299 date "2023-01-01" @default.
- W4309774299 modified "2023-10-16" @default.
- W4309774299 title "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles" @default.
- W4309774299 cites W1628954589 @default.
- W4309774299 cites W1966039250 @default.
- W4309774299 cites W1981780459 @default.
- W4309774299 cites W2044005487 @default.
- W4309774299 cites W2140123645 @default.
- W4309774299 cites W2152458971 @default.
- W4309774299 cites W2167503549 @default.
- W4309774299 cites W2563343938 @default.
- W4309774299 cites W2612210564 @default.
- W4309774299 cites W2619257997 @default.
- W4309774299 cites W2760722297 @default.
- W4309774299 cites W2769640934 @default.
- W4309774299 cites W2772904049 @default.
- W4309774299 cites W2793725683 @default.
- W4309774299 cites W2795079499 @default.
- W4309774299 cites W2883353308 @default.
- W4309774299 cites W2898548282 @default.
- W4309774299 cites W2902761272 @default.
- W4309774299 cites W2924382816 @default.
- W4309774299 cites W2939821686 @default.
- W4309774299 cites W2945506889 @default.
- W4309774299 cites W2948266581 @default.
- W4309774299 cites W2962135525 @default.
- W4309774299 cites W2972487051 @default.
- W4309774299 cites W2978449012 @default.
- W4309774299 cites W2981984647 @default.
- W4309774299 cites W2988243667 @default.
- W4309774299 cites W2995690832 @default.
- W4309774299 cites W2996610370 @default.
- W4309774299 cites W3002835034 @default.
- W4309774299 cites W3009652674 @default.
- W4309774299 cites W3012075351 @default.
- W4309774299 cites W3012222963 @default.
- W4309774299 cites W3013252775 @default.
- W4309774299 cites W3021732958 @default.
- W4309774299 cites W3023519568 @default.
- W4309774299 cites W3024220329 @default.
- W4309774299 cites W3025111165 @default.
- W4309774299 cites W3083565827 @default.
- W4309774299 cites W3092945008 @default.
- W4309774299 cites W3095729178 @default.
- W4309774299 cites W3102947106 @default.
- W4309774299 cites W3104887532 @default.
- W4309774299 cites W3122887986 @default.
- W4309774299 cites W3126452185 @default.
- W4309774299 cites W3139510216 @default.
- W4309774299 cites W3146913762 @default.
- W4309774299 cites W3159508169 @default.
- W4309774299 cites W3166628867 @default.
- W4309774299 cites W3171353223 @default.
- W4309774299 cites W3179571438 @default.
- W4309774299 cites W3216708413 @default.
- W4309774299 cites W4200394082 @default.
- W4309774299 cites W4210360507 @default.
- W4309774299 cites W4285725541 @default.
- W4309774299 doi "https://doi.org/10.1016/j.apenergy.2022.120307" @default.
- W4309774299 hasPublicationYear "2023" @default.
- W4309774299 type Work @default.
- W4309774299 citedByCount "9" @default.
- W4309774299 countsByYear W43097742992023 @default.
- W4309774299 crossrefType "journal-article" @default.
- W4309774299 hasAuthorship W4309774299A5014539824 @default.
- W4309774299 hasAuthorship W4309774299A5026340847 @default.
- W4309774299 hasAuthorship W4309774299A5026923870 @default.
- W4309774299 hasBestOaLocation W43097742991 @default.
- W4309774299 hasConcept C10551718 @default.
- W4309774299 hasConcept C111919701 @default.
- W4309774299 hasConcept C119857082 @default.
- W4309774299 hasConcept C121332964 @default.
- W4309774299 hasConcept C124101348 @default.
- W4309774299 hasConcept C127413603 @default.
- W4309774299 hasConcept C132964779 @default.
- W4309774299 hasConcept C154945302 @default.
- W4309774299 hasConcept C163258240 @default.
- W4309774299 hasConcept C199360897 @default.
- W4309774299 hasConcept C200601418 @default.
- W4309774299 hasConcept C2776582896 @default.
- W4309774299 hasConcept C2777294910 @default.
- W4309774299 hasConcept C41008148 @default.
- W4309774299 hasConcept C50644808 @default.
- W4309774299 hasConcept C555008776 @default.
- W4309774299 hasConcept C62520636 @default.
- W4309774299 hasConcept C79403827 @default.
- W4309774299 hasConcept C81363708 @default.
- W4309774299 hasConcept C8642999 @default.
- W4309774299 hasConcept C98045186 @default.
- W4309774299 hasConceptScore W4309774299C10551718 @default.
- W4309774299 hasConceptScore W4309774299C111919701 @default.
- W4309774299 hasConceptScore W4309774299C119857082 @default.
- W4309774299 hasConceptScore W4309774299C121332964 @default.