Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309776487> ?p ?o ?g. }
- W4309776487 endingPage "105048" @default.
- W4309776487 startingPage "105048" @default.
- W4309776487 abstract "Moisture content is a crucial factor affecting the quality of soybean seeds. However, the determination of moisture content of soybean seeds is time-consuming and expensive. In this study, visible-near-infrared hyperspectral imaging technology (400–1000 nm) coupled with wavelength selection algorithm was applied to determine the moisture content of soybean seeds. Hyperspectral images of 96 soybean samples were obtained, and the sample set partitioning based on joint x-y distance algorithm was used to divide the calibration and prediction sets after removing outliers. Then, partial least squares regression (PLSR) models based on the original and preprocessing spectra were established, and the prediction effect of the original spectra was better than that of the preprocessing spectra. Five wavelength selection algorithms were used to select feature wavelengths to optimize the models further. Each wavelength selection algorithm was run 100 times independently to investigate its stability. The PLSR models were established based on the results of wavelength selection, and the prediction effects of all models were statistically analyzed. Results showed that the combination of interval variable iterative space shrinkage approach and successive projections algorithm (IVISSA-SPA) based on the original spectra was the most suitable model for the determination of moisture content of soybean seeds. The prediction accuracies of the IVISSA-SPA model were R2P = 0.9713 ± 0.0044, RMSEP = 0.307 ± 0.021 and RPD = 6.058 ± 0.344 in 100 independent experiments. Results indicated that visible-near-infrared hyperspectral imaging coupled with wavelength selection algorithm provided a rapid method for determining the moisture content of soybean seeds." @default.
- W4309776487 created "2022-11-29" @default.
- W4309776487 creator A5017947172 @default.
- W4309776487 creator A5019929472 @default.
- W4309776487 creator A5052112582 @default.
- W4309776487 creator A5058875876 @default.
- W4309776487 creator A5069496916 @default.
- W4309776487 creator A5074615062 @default.
- W4309776487 creator A5079545811 @default.
- W4309776487 date "2023-03-01" @default.
- W4309776487 modified "2023-09-30" @default.
- W4309776487 title "Application of visible-near-infrared hyperspectral imaging technology coupled with wavelength selection algorithm for rapid determination of moisture content of soybean seeds" @default.
- W4309776487 cites W1975579380 @default.
- W4309776487 cites W1982755765 @default.
- W4309776487 cites W1992381087 @default.
- W4309776487 cites W1997270149 @default.
- W4309776487 cites W2047279401 @default.
- W4309776487 cites W2071521932 @default.
- W4309776487 cites W2073503722 @default.
- W4309776487 cites W2094213917 @default.
- W4309776487 cites W2178703498 @default.
- W4309776487 cites W2228221367 @default.
- W4309776487 cites W2432399008 @default.
- W4309776487 cites W2548172609 @default.
- W4309776487 cites W2586094630 @default.
- W4309776487 cites W2610744113 @default.
- W4309776487 cites W2612804903 @default.
- W4309776487 cites W2613722966 @default.
- W4309776487 cites W2752417628 @default.
- W4309776487 cites W2794244565 @default.
- W4309776487 cites W2909790093 @default.
- W4309776487 cites W2911863681 @default.
- W4309776487 cites W2957658431 @default.
- W4309776487 cites W2972951566 @default.
- W4309776487 cites W2977578641 @default.
- W4309776487 cites W2981894987 @default.
- W4309776487 cites W2990428559 @default.
- W4309776487 cites W3024262385 @default.
- W4309776487 cites W3057149325 @default.
- W4309776487 cites W3124897692 @default.
- W4309776487 cites W3128188351 @default.
- W4309776487 cites W3134781677 @default.
- W4309776487 cites W3137678446 @default.
- W4309776487 cites W3158831944 @default.
- W4309776487 cites W3163057787 @default.
- W4309776487 cites W3173134405 @default.
- W4309776487 cites W4200533711 @default.
- W4309776487 cites W4234549270 @default.
- W4309776487 doi "https://doi.org/10.1016/j.jfca.2022.105048" @default.
- W4309776487 hasPublicationYear "2023" @default.
- W4309776487 type Work @default.
- W4309776487 citedByCount "4" @default.
- W4309776487 countsByYear W43097764872023 @default.
- W4309776487 crossrefType "journal-article" @default.
- W4309776487 hasAuthorship W4309776487A5017947172 @default.
- W4309776487 hasAuthorship W4309776487A5019929472 @default.
- W4309776487 hasAuthorship W4309776487A5052112582 @default.
- W4309776487 hasAuthorship W4309776487A5058875876 @default.
- W4309776487 hasAuthorship W4309776487A5069496916 @default.
- W4309776487 hasAuthorship W4309776487A5074615062 @default.
- W4309776487 hasAuthorship W4309776487A5079545811 @default.
- W4309776487 hasConcept C105795698 @default.
- W4309776487 hasConcept C11413529 @default.
- W4309776487 hasConcept C120665830 @default.
- W4309776487 hasConcept C121332964 @default.
- W4309776487 hasConcept C127413603 @default.
- W4309776487 hasConcept C148483581 @default.
- W4309776487 hasConcept C153180895 @default.
- W4309776487 hasConcept C154945302 @default.
- W4309776487 hasConcept C159078339 @default.
- W4309776487 hasConcept C165838908 @default.
- W4309776487 hasConcept C169272836 @default.
- W4309776487 hasConcept C186060115 @default.
- W4309776487 hasConcept C187320778 @default.
- W4309776487 hasConcept C205649164 @default.
- W4309776487 hasConcept C22354355 @default.
- W4309776487 hasConcept C24939127 @default.
- W4309776487 hasConcept C2776214188 @default.
- W4309776487 hasConcept C33923547 @default.
- W4309776487 hasConcept C34736171 @default.
- W4309776487 hasConcept C41008148 @default.
- W4309776487 hasConcept C43571822 @default.
- W4309776487 hasConcept C6260449 @default.
- W4309776487 hasConcept C62649853 @default.
- W4309776487 hasConcept C79337645 @default.
- W4309776487 hasConcept C86803240 @default.
- W4309776487 hasConceptScore W4309776487C105795698 @default.
- W4309776487 hasConceptScore W4309776487C11413529 @default.
- W4309776487 hasConceptScore W4309776487C120665830 @default.
- W4309776487 hasConceptScore W4309776487C121332964 @default.
- W4309776487 hasConceptScore W4309776487C127413603 @default.
- W4309776487 hasConceptScore W4309776487C148483581 @default.
- W4309776487 hasConceptScore W4309776487C153180895 @default.
- W4309776487 hasConceptScore W4309776487C154945302 @default.
- W4309776487 hasConceptScore W4309776487C159078339 @default.
- W4309776487 hasConceptScore W4309776487C165838908 @default.
- W4309776487 hasConceptScore W4309776487C169272836 @default.
- W4309776487 hasConceptScore W4309776487C186060115 @default.