Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309776835> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4309776835 endingPage "111783" @default.
- W4309776835 startingPage "111783" @default.
- W4309776835 abstract "The invariant distribution is an important object in the study of randomly perturbed dynamical systems. The existing methods, including traditional finite difference or finite element methods as well as recently developed machine learning-based methods, all require the knowledge of the dynamical equations or adequate equilibrium data for estimating the invariant distribution. In this work, we propose a data-driven method for inferring the dynamics and simultaneously learning the invariant distribution from noisy trajectory data of the dynamical system. The data is not necessarily at equilibrium and may be collected from the transient period of the dynamics. The proposed method combines the idea of maximum likelihood estimation and a decomposition of the force field as suggested by the Fokker-Planck equation. The drift term (or force field), which is in the form of a decomposition with the constraint specified by the Fokker-Planck equation, and the diffusion term are learned from the data using an alternate updating algorithm. The generalized potential, which is the negative logarithm of the invariant distribution multiplied by the noise, is then obtained from the potential part of the decomposition. The proposed method is able to deal with high-dimensional dynamical systems and the small noise regime, without prior knowledge of the dynamical equations. The proposed method is demonstrated by four numerical examples, including a practical 10-dimensional biological network model." @default.
- W4309776835 created "2022-11-29" @default.
- W4309776835 creator A5047009334 @default.
- W4309776835 creator A5053381657 @default.
- W4309776835 creator A5069654038 @default.
- W4309776835 date "2023-02-01" @default.
- W4309776835 modified "2023-10-16" @default.
- W4309776835 title "Computing high-dimensional invariant distributions from noisy data" @default.
- W4309776835 cites W1964081206 @default.
- W4309776835 cites W1970779075 @default.
- W4309776835 cites W1970829549 @default.
- W4309776835 cites W1975228206 @default.
- W4309776835 cites W2035824523 @default.
- W4309776835 cites W2055436939 @default.
- W4309776835 cites W2124245667 @default.
- W4309776835 cites W2137005750 @default.
- W4309776835 cites W2141394518 @default.
- W4309776835 cites W2327385360 @default.
- W4309776835 cites W2607078470 @default.
- W4309776835 cites W2887552524 @default.
- W4309776835 cites W3014871311 @default.
- W4309776835 cites W3103862770 @default.
- W4309776835 cites W3173192644 @default.
- W4309776835 cites W3210372908 @default.
- W4309776835 doi "https://doi.org/10.1016/j.jcp.2022.111783" @default.
- W4309776835 hasPublicationYear "2023" @default.
- W4309776835 type Work @default.
- W4309776835 citedByCount "0" @default.
- W4309776835 crossrefType "journal-article" @default.
- W4309776835 hasAuthorship W4309776835A5047009334 @default.
- W4309776835 hasAuthorship W4309776835A5053381657 @default.
- W4309776835 hasAuthorship W4309776835A5069654038 @default.
- W4309776835 hasConcept C119857082 @default.
- W4309776835 hasConcept C121332964 @default.
- W4309776835 hasConcept C121864883 @default.
- W4309776835 hasConcept C134306372 @default.
- W4309776835 hasConcept C190470478 @default.
- W4309776835 hasConcept C2777032711 @default.
- W4309776835 hasConcept C28826006 @default.
- W4309776835 hasConcept C33923547 @default.
- W4309776835 hasConcept C37914503 @default.
- W4309776835 hasConcept C39927690 @default.
- W4309776835 hasConcept C41008148 @default.
- W4309776835 hasConcept C62520636 @default.
- W4309776835 hasConcept C79379906 @default.
- W4309776835 hasConceptScore W4309776835C119857082 @default.
- W4309776835 hasConceptScore W4309776835C121332964 @default.
- W4309776835 hasConceptScore W4309776835C121864883 @default.
- W4309776835 hasConceptScore W4309776835C134306372 @default.
- W4309776835 hasConceptScore W4309776835C190470478 @default.
- W4309776835 hasConceptScore W4309776835C2777032711 @default.
- W4309776835 hasConceptScore W4309776835C28826006 @default.
- W4309776835 hasConceptScore W4309776835C33923547 @default.
- W4309776835 hasConceptScore W4309776835C37914503 @default.
- W4309776835 hasConceptScore W4309776835C39927690 @default.
- W4309776835 hasConceptScore W4309776835C41008148 @default.
- W4309776835 hasConceptScore W4309776835C62520636 @default.
- W4309776835 hasConceptScore W4309776835C79379906 @default.
- W4309776835 hasFunder F4320320696 @default.
- W4309776835 hasFunder F4320320709 @default.
- W4309776835 hasLocation W43097768351 @default.
- W4309776835 hasOpenAccess W4309776835 @default.
- W4309776835 hasPrimaryLocation W43097768351 @default.
- W4309776835 hasRelatedWork W2039522107 @default.
- W4309776835 hasRelatedWork W2056251586 @default.
- W4309776835 hasRelatedWork W2064249542 @default.
- W4309776835 hasRelatedWork W2081622457 @default.
- W4309776835 hasRelatedWork W2157817101 @default.
- W4309776835 hasRelatedWork W2163330118 @default.
- W4309776835 hasRelatedWork W2334791747 @default.
- W4309776835 hasRelatedWork W3166409534 @default.
- W4309776835 hasRelatedWork W4229773585 @default.
- W4309776835 hasRelatedWork W4292641069 @default.
- W4309776835 hasVolume "474" @default.
- W4309776835 isParatext "false" @default.
- W4309776835 isRetracted "false" @default.
- W4309776835 workType "article" @default.