Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309778021> ?p ?o ?g. }
- W4309778021 endingPage "882" @default.
- W4309778021 startingPage "849" @default.
- W4309778021 abstract "The interaction of seismic events with geo‐environmental conditions and anthropogenic activities may exacerbate the risk of landslide hazard in a mountainous region. As an example of this, the 2005 Kashmir earthquake triggered many shallow to deep slope failures, which were further intensified in the following years by human activities notably along road networks, posing a long‐term hazard. Hence, this study was planned to evaluate the effectiveness of landslide susceptibility prediction along an earthquake‐affected road section of Neelum Highway using six different data‐driven models. We applied analytical hierarchy process as a heuristic approach, weight of evidence and index of entropy as statistical models and multi‐layer perceptron, support vector machine and binary logistic regression (BLR) as machine learning models. Initially, 224 landslide locations were marked through field surveys to prepare a landslide inventory, which was further randomly divided into training (70%) and testing (30%) datasets. Then, 13 landslide causative factors (LCFs) were extracted from geospatial database and analysed by measuring collinearity among factors and assessing their contribution to landslide occurrence using different feature selection methods for inclusion in susceptibility modelling. Thereafter, six employed models were trained to produce landslide susceptibility maps of the investigated road section. Finally, the area under receiver operating characteristics (AU‐ROC) curve and various statistical measures were applied to validate and compare the performance of modelled landslide susceptibility. The results revealed that no collinearity issue exists among all 13 LCFs, and all six models exhibited satisfying performance in predicting landslide susceptibility of study area. However, BLR model has produced the most promising and optimum results as compared with other models with AU‐ROC (0.881), Matthew's correlation coefficient (0.609), Kappa coefficient (0.604), accuracy (0.797) and F ‐score (0.787). The outcomes of this study can be used as pertinent guide for preventing and managing the landslide disaster risk along Neelum Highway and beyond." @default.
- W4309778021 created "2022-11-29" @default.
- W4309778021 creator A5021774384 @default.
- W4309778021 creator A5026100082 @default.
- W4309778021 creator A5031672694 @default.
- W4309778021 creator A5036885388 @default.
- W4309778021 creator A5040698421 @default.
- W4309778021 creator A5014282128 @default.
- W4309778021 date "2022-11-21" @default.
- W4309778021 modified "2023-10-12" @default.
- W4309778021 title "Application of <scp>data‐driven</scp> techniques for landslide susceptibility prediction along an earthquake‐affected road section in Kashmir Himalaya" @default.
- W4309778021 cites W1003766845 @default.
- W4309778021 cites W1426183340 @default.
- W4309778021 cites W143148934 @default.
- W4309778021 cites W1583700199 @default.
- W4309778021 cites W1808644423 @default.
- W4309778021 cites W1968546252 @default.
- W4309778021 cites W1976058588 @default.
- W4309778021 cites W1977053323 @default.
- W4309778021 cites W1979486410 @default.
- W4309778021 cites W1981646498 @default.
- W4309778021 cites W1983631475 @default.
- W4309778021 cites W1984285105 @default.
- W4309778021 cites W1994454004 @default.
- W4309778021 cites W1997278604 @default.
- W4309778021 cites W1998025025 @default.
- W4309778021 cites W2000550147 @default.
- W4309778021 cites W2002620848 @default.
- W4309778021 cites W2009093518 @default.
- W4309778021 cites W2012118327 @default.
- W4309778021 cites W2016637329 @default.
- W4309778021 cites W2017458088 @default.
- W4309778021 cites W2018459837 @default.
- W4309778021 cites W2043453436 @default.
- W4309778021 cites W2053154970 @default.
- W4309778021 cites W2054036854 @default.
- W4309778021 cites W2054599050 @default.
- W4309778021 cites W2058082754 @default.
- W4309778021 cites W2058397654 @default.
- W4309778021 cites W2062159973 @default.
- W4309778021 cites W2062773906 @default.
- W4309778021 cites W2063623478 @default.
- W4309778021 cites W2066848039 @default.
- W4309778021 cites W2079560833 @default.
- W4309778021 cites W2082507487 @default.
- W4309778021 cites W2084718611 @default.
- W4309778021 cites W2088730795 @default.
- W4309778021 cites W2091085232 @default.
- W4309778021 cites W2137034166 @default.
- W4309778021 cites W2140679062 @default.
- W4309778021 cites W2140964565 @default.
- W4309778021 cites W2142827986 @default.
- W4309778021 cites W2143655629 @default.
- W4309778021 cites W2155751689 @default.
- W4309778021 cites W2162173125 @default.
- W4309778021 cites W2222447337 @default.
- W4309778021 cites W2257426232 @default.
- W4309778021 cites W2320987650 @default.
- W4309778021 cites W2329720251 @default.
- W4309778021 cites W2329793375 @default.
- W4309778021 cites W2467967664 @default.
- W4309778021 cites W2506398495 @default.
- W4309778021 cites W2519232878 @default.
- W4309778021 cites W2542420325 @default.
- W4309778021 cites W2580219088 @default.
- W4309778021 cites W2584860397 @default.
- W4309778021 cites W2585206336 @default.
- W4309778021 cites W2587950680 @default.
- W4309778021 cites W2592104387 @default.
- W4309778021 cites W2594255262 @default.
- W4309778021 cites W2609964738 @default.
- W4309778021 cites W2611197748 @default.
- W4309778021 cites W2735780551 @default.
- W4309778021 cites W2766585573 @default.
- W4309778021 cites W2768711855 @default.
- W4309778021 cites W2775745878 @default.
- W4309778021 cites W2783350994 @default.
- W4309778021 cites W2793831793 @default.
- W4309778021 cites W2802780461 @default.
- W4309778021 cites W2808860853 @default.
- W4309778021 cites W2898422933 @default.
- W4309778021 cites W2898899267 @default.
- W4309778021 cites W2901271692 @default.
- W4309778021 cites W2901334938 @default.
- W4309778021 cites W2907675382 @default.
- W4309778021 cites W2911424673 @default.
- W4309778021 cites W2921124223 @default.
- W4309778021 cites W2942837776 @default.
- W4309778021 cites W2953827599 @default.
- W4309778021 cites W2956002234 @default.
- W4309778021 cites W2964278775 @default.
- W4309778021 cites W2979806575 @default.
- W4309778021 cites W2982937132 @default.
- W4309778021 cites W2999729702 @default.
- W4309778021 cites W3005741980 @default.
- W4309778021 cites W3006583570 @default.
- W4309778021 cites W3010757542 @default.
- W4309778021 cites W3012555526 @default.