Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309778900> ?p ?o ?g. }
- W4309778900 endingPage "126715" @default.
- W4309778900 startingPage "126715" @default.
- W4309778900 abstract "• Biocrude yields from hydrothermal co-liquefaction were well estimated by machine learning algorithms. • Hydrothermal co-liquefaction synergy was highly dependent on the lipid and carbohydrate content in mixed feedstock. • The optimization results from machine learning algorithms were adequately verified by laboratory experiments. • A mini software incorporating machine learning algorithm was constructed to mine synergy quickly. Hydrothermal co-liquefaction (co-HTL) of different feedstocks has received much research attention, not only because its significant importance in real industrial applications, but also due to the potential synergy in biocrude yield by tuning mixed feedstock’s biochemical composition and reaction conditions. Although some attempts have been made to search for the synergy from co-liquefying various feedstocks, these processes were remarkably time and labor consuming, and often with low rate of success. Therefore, this study for the first time employed machine learning algorithms to mine the synergistic effect in co-HTL. Started with single task prediction, three machine learning algorithms, including Adaboost, Gradient Boosting Regression and Random Forest, were trained and tested for predicting co-HTL biocrude yield and relative co-liquefaction effect (CE). It was found that their prediction performances were favorable over traditional mathematical equations, in which Gradient Boosting Regression exhibited the best performance for co-HTL biocrude yield prediction (training and testing R 2 of 0.976 and 0.812 respectively), and Adaboost better estimated relative CE. Feature importance analysis further revealed that co-HTL biocrude yield was mainly influenced by the reaction temperature, but relative CE was closely related to mixed feedstock’s lipid and carbohydrate content, implying that the synergism/antagonism from co-HTL was more dependent on the biochemical composition of mixed feedstock than reaction conditions. Multitask predictions, estimating biocrude yield and relative CE simultaneously that are usually required in real co-HTL practices, suggested Adaboost was the most satisfying algorithm (training R 2 of 0.922) among studied ones. An optimal relative CE of 22.07 % along with 36.31 wt% (daf) biocrude yield could be obtained when the mixed feedstock contained 42.93 % protein, 50.49 % carbohydrate, 6.58 % lipid at a temperature of 320 °C, which were in well agreement with experimental results from co-HTL of biomass model components. A mini application software (exe. file including machine learning algorithm) was also developed for quick estimation of synergy and co-HTL biocrude yield by simply inputting mixed feedstock’s biochemical composition and reaction conditions, showing promising potential for academic and industrial practices to mine the co-HTL synergy and design processes efficiently." @default.
- W4309778900 created "2022-11-29" @default.
- W4309778900 creator A5012644724 @default.
- W4309778900 creator A5017565393 @default.
- W4309778900 creator A5023520837 @default.
- W4309778900 creator A5045362189 @default.
- W4309778900 creator A5053865436 @default.
- W4309778900 creator A5054030742 @default.
- W4309778900 creator A5082366420 @default.
- W4309778900 creator A5087222691 @default.
- W4309778900 date "2023-02-01" @default.
- W4309778900 modified "2023-10-16" @default.
- W4309778900 title "Mining the synergistic effect in hydrothermal co-liquefaction of real feedstocks through machine learning approaches" @default.
- W4309778900 cites W1511065567 @default.
- W4309778900 cites W1874489479 @default.
- W4309778900 cites W1988790447 @default.
- W4309778900 cites W2055907217 @default.
- W4309778900 cites W2141733031 @default.
- W4309778900 cites W2161548576 @default.
- W4309778900 cites W2567191486 @default.
- W4309778900 cites W2602878818 @default.
- W4309778900 cites W2612029180 @default.
- W4309778900 cites W2744566730 @default.
- W4309778900 cites W2892200623 @default.
- W4309778900 cites W2899227440 @default.
- W4309778900 cites W2914086092 @default.
- W4309778900 cites W2921713540 @default.
- W4309778900 cites W2925164378 @default.
- W4309778900 cites W2946234369 @default.
- W4309778900 cites W2972443703 @default.
- W4309778900 cites W2980121927 @default.
- W4309778900 cites W2990367159 @default.
- W4309778900 cites W2996425496 @default.
- W4309778900 cites W3024525656 @default.
- W4309778900 cites W3033469294 @default.
- W4309778900 cites W3048034331 @default.
- W4309778900 cites W3120490623 @default.
- W4309778900 cites W3134638444 @default.
- W4309778900 cites W3200060725 @default.
- W4309778900 cites W3203480485 @default.
- W4309778900 cites W3203864863 @default.
- W4309778900 cites W3203865362 @default.
- W4309778900 cites W3212947954 @default.
- W4309778900 cites W3214640825 @default.
- W4309778900 cites W4214536198 @default.
- W4309778900 cites W4220823505 @default.
- W4309778900 cites W4224435126 @default.
- W4309778900 cites W4229009604 @default.
- W4309778900 cites W4285482279 @default.
- W4309778900 cites W745267518 @default.
- W4309778900 doi "https://doi.org/10.1016/j.fuel.2022.126715" @default.
- W4309778900 hasPublicationYear "2023" @default.
- W4309778900 type Work @default.
- W4309778900 citedByCount "4" @default.
- W4309778900 countsByYear W43097789002023 @default.
- W4309778900 crossrefType "journal-article" @default.
- W4309778900 hasAuthorship W4309778900A5012644724 @default.
- W4309778900 hasAuthorship W4309778900A5017565393 @default.
- W4309778900 hasAuthorship W4309778900A5023520837 @default.
- W4309778900 hasAuthorship W4309778900A5045362189 @default.
- W4309778900 hasAuthorship W4309778900A5053865436 @default.
- W4309778900 hasAuthorship W4309778900A5054030742 @default.
- W4309778900 hasAuthorship W4309778900A5082366420 @default.
- W4309778900 hasAuthorship W4309778900A5087222691 @default.
- W4309778900 hasConcept C127413603 @default.
- W4309778900 hasConcept C156622251 @default.
- W4309778900 hasConcept C161790260 @default.
- W4309778900 hasConcept C178790620 @default.
- W4309778900 hasConcept C185592680 @default.
- W4309778900 hasConcept C191859794 @default.
- W4309778900 hasConcept C21880701 @default.
- W4309778900 hasConcept C2779276218 @default.
- W4309778900 hasConcept C39432304 @default.
- W4309778900 hasConcept C41008148 @default.
- W4309778900 hasConcept C42360764 @default.
- W4309778900 hasConceptScore W4309778900C127413603 @default.
- W4309778900 hasConceptScore W4309778900C156622251 @default.
- W4309778900 hasConceptScore W4309778900C161790260 @default.
- W4309778900 hasConceptScore W4309778900C178790620 @default.
- W4309778900 hasConceptScore W4309778900C185592680 @default.
- W4309778900 hasConceptScore W4309778900C191859794 @default.
- W4309778900 hasConceptScore W4309778900C21880701 @default.
- W4309778900 hasConceptScore W4309778900C2779276218 @default.
- W4309778900 hasConceptScore W4309778900C39432304 @default.
- W4309778900 hasConceptScore W4309778900C41008148 @default.
- W4309778900 hasConceptScore W4309778900C42360764 @default.
- W4309778900 hasFunder F4320321878 @default.
- W4309778900 hasFunder F4320321893 @default.
- W4309778900 hasFunder F4320325946 @default.
- W4309778900 hasLocation W43097789001 @default.
- W4309778900 hasOpenAccess W4309778900 @default.
- W4309778900 hasPrimaryLocation W43097789001 @default.
- W4309778900 hasRelatedWork W2029825997 @default.
- W4309778900 hasRelatedWork W2141733031 @default.
- W4309778900 hasRelatedWork W2335815922 @default.
- W4309778900 hasRelatedWork W2382863134 @default.
- W4309778900 hasRelatedWork W2748952813 @default.
- W4309778900 hasRelatedWork W2899084033 @default.