Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309779849> ?p ?o ?g. }
- W4309779849 endingPage "105580" @default.
- W4309779849 startingPage "105580" @default.
- W4309779849 abstract "Convolutional neural networks (CNNs) have attracted increasing attention in recent years because of their powerful abilities to extract and represent spatial/temporal information. However, for general data, its features are assumed to have weak or no correlation, and directly applying CNN to classify such data could result in poor classification performance. To address this problem, a combined technique of original data representation method of fuzzy penalty function-based constrained particle swarm optimization (FCPSO) and CNN, so-called FCPSO-CNN is designed to effectively solve the classification problems for generic dataset and applied to recognize (classify) black plastic wastes in recycling problems. In more detail, CPSO is introduced to optimize feature reordering matrix under constraints and the construction of this matrix is driven by fitness function of CNN that quantifies classification performance. The Mamdani type fuzzy inference system (FIS) is employed to realize the fuzzy penalty function (FPF) which is utilized to realize the constrained problems of CPSO as well as alleviate the issues of the original penalty function method suffering from the lack of robustness. Experimental results demonstrate that FCPSO-CNN achieves the best classification accuracy on 13 out of 17 datasets; the statistical analysis also confirms the superiority of FCPSO-CNN. An interesting point is worth to mention that some feature reordering matrices in the infeasible space come with better classification accuracy. It has been found that the proposed method results in more accurate solution than one-dimensional CNN, random reordering feature-based CNN and some well-known classifiers (e.g., Naive Bayes, Multilayer perceptron, Support vector machine)." @default.
- W4309779849 created "2022-11-29" @default.
- W4309779849 creator A5003799782 @default.
- W4309779849 creator A5033254809 @default.
- W4309779849 creator A5035932097 @default.
- W4309779849 creator A5083193684 @default.
- W4309779849 date "2023-01-01" @default.
- W4309779849 modified "2023-10-14" @default.
- W4309779849 title "Data preprocessing strategy in constructing convolutional neural network classifier based on constrained particle swarm optimization with fuzzy penalty function" @default.
- W4309779849 cites W1932847118 @default.
- W4309779849 cites W1989665358 @default.
- W4309779849 cites W2041657594 @default.
- W4309779849 cites W2068470708 @default.
- W4309779849 cites W2112796928 @default.
- W4309779849 cites W2124386111 @default.
- W4309779849 cites W2127982691 @default.
- W4309779849 cites W2141358266 @default.
- W4309779849 cites W2145479420 @default.
- W4309779849 cites W2146096861 @default.
- W4309779849 cites W2163922914 @default.
- W4309779849 cites W2164655924 @default.
- W4309779849 cites W2167101736 @default.
- W4309779849 cites W2346357836 @default.
- W4309779849 cites W2794169953 @default.
- W4309779849 cites W2899015155 @default.
- W4309779849 cites W2919115771 @default.
- W4309779849 cites W3033654738 @default.
- W4309779849 cites W3039137888 @default.
- W4309779849 cites W3071112808 @default.
- W4309779849 cites W3081889057 @default.
- W4309779849 cites W3095623252 @default.
- W4309779849 cites W3102626794 @default.
- W4309779849 cites W3131245832 @default.
- W4309779849 cites W3134666949 @default.
- W4309779849 cites W3138235530 @default.
- W4309779849 cites W3145713205 @default.
- W4309779849 cites W3148595981 @default.
- W4309779849 cites W3162119082 @default.
- W4309779849 cites W3173041499 @default.
- W4309779849 cites W3191766264 @default.
- W4309779849 cites W3203521505 @default.
- W4309779849 cites W3210416183 @default.
- W4309779849 cites W3215717773 @default.
- W4309779849 cites W4200105653 @default.
- W4309779849 cites W4200162864 @default.
- W4309779849 cites W4200351803 @default.
- W4309779849 cites W4200496658 @default.
- W4309779849 cites W4206023940 @default.
- W4309779849 cites W4284694767 @default.
- W4309779849 cites W4289236186 @default.
- W4309779849 cites W566797584 @default.
- W4309779849 doi "https://doi.org/10.1016/j.engappai.2022.105580" @default.
- W4309779849 hasPublicationYear "2023" @default.
- W4309779849 type Work @default.
- W4309779849 citedByCount "5" @default.
- W4309779849 countsByYear W43097798492023 @default.
- W4309779849 crossrefType "journal-article" @default.
- W4309779849 hasAuthorship W4309779849A5003799782 @default.
- W4309779849 hasAuthorship W4309779849A5033254809 @default.
- W4309779849 hasAuthorship W4309779849A5035932097 @default.
- W4309779849 hasAuthorship W4309779849A5083193684 @default.
- W4309779849 hasConcept C119857082 @default.
- W4309779849 hasConcept C126255220 @default.
- W4309779849 hasConcept C153180895 @default.
- W4309779849 hasConcept C154945302 @default.
- W4309779849 hasConcept C33923547 @default.
- W4309779849 hasConcept C41008148 @default.
- W4309779849 hasConcept C6180225 @default.
- W4309779849 hasConcept C81363708 @default.
- W4309779849 hasConcept C85617194 @default.
- W4309779849 hasConcept C95623464 @default.
- W4309779849 hasConceptScore W4309779849C119857082 @default.
- W4309779849 hasConceptScore W4309779849C126255220 @default.
- W4309779849 hasConceptScore W4309779849C153180895 @default.
- W4309779849 hasConceptScore W4309779849C154945302 @default.
- W4309779849 hasConceptScore W4309779849C33923547 @default.
- W4309779849 hasConceptScore W4309779849C41008148 @default.
- W4309779849 hasConceptScore W4309779849C6180225 @default.
- W4309779849 hasConceptScore W4309779849C81363708 @default.
- W4309779849 hasConceptScore W4309779849C85617194 @default.
- W4309779849 hasConceptScore W4309779849C95623464 @default.
- W4309779849 hasFunder F4320321001 @default.
- W4309779849 hasFunder F4320321408 @default.
- W4309779849 hasFunder F4320322030 @default.
- W4309779849 hasFunder F4320322120 @default.
- W4309779849 hasFunder F4320324174 @default.
- W4309779849 hasLocation W43097798491 @default.
- W4309779849 hasOpenAccess W4309779849 @default.
- W4309779849 hasPrimaryLocation W43097798491 @default.
- W4309779849 hasRelatedWork W1970507958 @default.
- W4309779849 hasRelatedWork W1977335770 @default.
- W4309779849 hasRelatedWork W2012481935 @default.
- W4309779849 hasRelatedWork W2058809596 @default.
- W4309779849 hasRelatedWork W2062802260 @default.
- W4309779849 hasRelatedWork W2091724753 @default.
- W4309779849 hasRelatedWork W2175677697 @default.
- W4309779849 hasRelatedWork W2766314973 @default.
- W4309779849 hasRelatedWork W3134574304 @default.