Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309781648> ?p ?o ?g. }
- W4309781648 endingPage "270" @default.
- W4309781648 startingPage "258" @default.
- W4309781648 abstract "Synthetic hydrogels are attractive platforms due in part to their highly tunable mechanics, which impact cell behavior and secretory profile. These mechanics are often controlled by altering the number of crosslinks or the total polymer concentration in the gel, leading to structure-property relationships that inherently couple network connectivity to the overall modulus. In contrast, the native extracellular matrix (ECM) contains structured biopolymers that enable stiff gels even at low polymer content, facilitating 3D cell culture and permeability of soluble factors. To mimic the hierarchical order of natural ECM, this work describes a synthetic hydrogel system in which mechanics are tuned using the structure of sequence-defined peptoid crosslinkers, while fixing network connectivity. Peptoid crosslinkers with different secondary structures are investigated: 1) a helical, molecularly stiff peptoid, 2) a non-helical, less stiff peptoid, and 3) an unstructured, relatively flexible peptoid. Bulk hydrogel storage modulus increases when crosslinkers of higher chain stiffness are used. In-vitro studies assess the viability, proliferation, cell morphology, and immunomodulatory activity of human mesenchymal stem cells (hMSCs) on each hydrogel substrate. Matrix mechanics regulate the morphology of hMSCs on the developed substrates, and all of the hydrogels studied upregulate IDO production over culture on TCP. Softer substrates further this upregulation to a plateau. Overall, this system offers a biomimetic strategy for decoupling hydrogel storage modulus from network connectivity, enabling systematic study of biomaterial properties on hMSC behavior and enhancement of cellular functionality for therapeutic applications. STATEMENT OF SIGNIFICANCE: Various strategies to tune hydrogel mechanics have been developed to control human mesenchymal stem cell (hMSC) behavior and regulate their immunomodulatory potential. However, these strategies typically couple mechanics to network connectivity, which in turn changes other hydrogel properties such as permeability that may have unintended effects on hMSC behavior. This work presents a strategy to tune hydrogel mechanics using crosslinkers with different secondary structure and molecular rigidity. This strategy successfully decouples hydrogel moduli from crosslinker stoichiometry and mimics the hierarchical nature of the native extracellular matrix. The moduli of the developed hydrogels led to significant impacts on hMSC morphology and proliferation, and increased immunomodulatory potential, indicating that molecular rigidity is a promising avenue to control engineered ECM mechanics for therapeutic applications." @default.
- W4309781648 created "2022-11-29" @default.
- W4309781648 creator A5022256638 @default.
- W4309781648 creator A5034781241 @default.
- W4309781648 creator A5069371504 @default.
- W4309781648 creator A5071746980 @default.
- W4309781648 date "2023-01-01" @default.
- W4309781648 modified "2023-09-26" @default.
- W4309781648 title "Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels" @default.
- W4309781648 cites W1505072916 @default.
- W4309781648 cites W1573976459 @default.
- W4309781648 cites W1642981578 @default.
- W4309781648 cites W1964869187 @default.
- W4309781648 cites W1985435463 @default.
- W4309781648 cites W1997450131 @default.
- W4309781648 cites W1999366632 @default.
- W4309781648 cites W2004507988 @default.
- W4309781648 cites W2006042714 @default.
- W4309781648 cites W2007326604 @default.
- W4309781648 cites W2008623993 @default.
- W4309781648 cites W2011319932 @default.
- W4309781648 cites W2026953775 @default.
- W4309781648 cites W2039409896 @default.
- W4309781648 cites W2045050721 @default.
- W4309781648 cites W2052618958 @default.
- W4309781648 cites W2057923438 @default.
- W4309781648 cites W2058289726 @default.
- W4309781648 cites W2063436620 @default.
- W4309781648 cites W2070740874 @default.
- W4309781648 cites W2075866529 @default.
- W4309781648 cites W2087431312 @default.
- W4309781648 cites W2087816485 @default.
- W4309781648 cites W2088128469 @default.
- W4309781648 cites W2090815903 @default.
- W4309781648 cites W2091332750 @default.
- W4309781648 cites W2091442298 @default.
- W4309781648 cites W2101376945 @default.
- W4309781648 cites W2103052217 @default.
- W4309781648 cites W2105895997 @default.
- W4309781648 cites W2109062556 @default.
- W4309781648 cites W2110947634 @default.
- W4309781648 cites W2114066412 @default.
- W4309781648 cites W2134208433 @default.
- W4309781648 cites W2137281934 @default.
- W4309781648 cites W2145871127 @default.
- W4309781648 cites W2155022471 @default.
- W4309781648 cites W2163659523 @default.
- W4309781648 cites W2168072233 @default.
- W4309781648 cites W2171105306 @default.
- W4309781648 cites W2253253071 @default.
- W4309781648 cites W2256181974 @default.
- W4309781648 cites W2320946658 @default.
- W4309781648 cites W2323692097 @default.
- W4309781648 cites W2592858278 @default.
- W4309781648 cites W2598281569 @default.
- W4309781648 cites W2725609720 @default.
- W4309781648 cites W2749819494 @default.
- W4309781648 cites W2751760736 @default.
- W4309781648 cites W2791276231 @default.
- W4309781648 cites W2791327347 @default.
- W4309781648 cites W2892182392 @default.
- W4309781648 cites W2905718190 @default.
- W4309781648 cites W2921168116 @default.
- W4309781648 cites W2946745423 @default.
- W4309781648 cites W2965262455 @default.
- W4309781648 cites W2979375227 @default.
- W4309781648 cites W2994979942 @default.
- W4309781648 cites W2995322453 @default.
- W4309781648 cites W3025415428 @default.
- W4309781648 cites W3031502120 @default.
- W4309781648 cites W3037843001 @default.
- W4309781648 cites W3049770505 @default.
- W4309781648 cites W3109804533 @default.
- W4309781648 cites W3130498905 @default.
- W4309781648 cites W3194911068 @default.
- W4309781648 cites W3198967375 @default.
- W4309781648 cites W3205306750 @default.
- W4309781648 cites W4200133451 @default.
- W4309781648 cites W4285094622 @default.
- W4309781648 doi "https://doi.org/10.1016/j.actbio.2022.11.027" @default.
- W4309781648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36423819" @default.
- W4309781648 hasPublicationYear "2023" @default.
- W4309781648 type Work @default.
- W4309781648 citedByCount "1" @default.
- W4309781648 countsByYear W43097816482023 @default.
- W4309781648 crossrefType "journal-article" @default.
- W4309781648 hasAuthorship W4309781648A5022256638 @default.
- W4309781648 hasAuthorship W4309781648A5034781241 @default.
- W4309781648 hasAuthorship W4309781648A5069371504 @default.
- W4309781648 hasAuthorship W4309781648A5071746980 @default.
- W4309781648 hasBestOaLocation W43097816482 @default.
- W4309781648 hasConcept C108586683 @default.
- W4309781648 hasConcept C12554922 @default.
- W4309781648 hasConcept C127413603 @default.
- W4309781648 hasConcept C136229726 @default.
- W4309781648 hasConcept C171250308 @default.
- W4309781648 hasConcept C185592680 @default.
- W4309781648 hasConcept C188027245 @default.