Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309783485> ?p ?o ?g. }
- W4309783485 endingPage "8452" @default.
- W4309783485 startingPage "8439" @default.
- W4309783485 abstract "Abstract. Deep-learning frameworks can effectively forecast the air pollution data for individual stations by decoding time series data. However, most of the existing time-series-based deep-learning models use offline spatial interpolation strategies and thus cannot reliably project the station-based forecast to the spatial region of interest. In this study, the station-based long short-term memory (LSTM) technique was extended for spatial air quality forecasting by combining a novel deep-learning layer, termed the broadcasting layer, which incorporates a learnable weight decay parameter designed for point-to-area extension. Unlike most existing deep-learning-based methods that isolate the interpolation from the model training process, the proposed end-to-end LSTM broadcasting framework can consider the temporal characteristics of the time series and spatial relationships among different stations. To validate the proposed deep-learning framework, PM2.5 and O3 forecasts for the next 48 h were obtained using 3D chemical transport model simulation results and ground observation data as the inputs. The root mean square error associated with the proposed framework was 40 % and 20 % lower than those of the Weather Research and Forecasting–Community Multiscale Air Quality model and an offline combination of the deep-learning and spatial interpolation methods, respectively. The novel LSTM broadcasting framework can be extended for air pollution forecasting in other regions of interest." @default.
- W4309783485 created "2022-11-29" @default.
- W4309783485 creator A5027312785 @default.
- W4309783485 creator A5039418285 @default.
- W4309783485 creator A5043773772 @default.
- W4309783485 creator A5057037925 @default.
- W4309783485 creator A5066054182 @default.
- W4309783485 creator A5066689451 @default.
- W4309783485 creator A5087873608 @default.
- W4309783485 date "2022-11-21" @default.
- W4309783485 modified "2023-09-30" @default.
- W4309783485 title "Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement" @default.
- W4309783485 cites W1676834762 @default.
- W4309783485 cites W1689711448 @default.
- W4309783485 cites W1973761432 @default.
- W4309783485 cites W2003831290 @default.
- W4309783485 cites W2064675550 @default.
- W4309783485 cites W2122607663 @default.
- W4309783485 cites W2131774270 @default.
- W4309783485 cites W2162284268 @default.
- W4309783485 cites W2754051771 @default.
- W4309783485 cites W2812669263 @default.
- W4309783485 cites W2892391038 @default.
- W4309783485 cites W2898924913 @default.
- W4309783485 cites W2905872298 @default.
- W4309783485 cites W2909877301 @default.
- W4309783485 cites W2912731314 @default.
- W4309783485 cites W2914487400 @default.
- W4309783485 cites W2929532340 @default.
- W4309783485 cites W2949220266 @default.
- W4309783485 cites W2952570801 @default.
- W4309783485 cites W2963370351 @default.
- W4309783485 cites W2965521597 @default.
- W4309783485 cites W3003037705 @default.
- W4309783485 cites W3004417816 @default.
- W4309783485 cites W3011899335 @default.
- W4309783485 cites W3027709318 @default.
- W4309783485 cites W3034152042 @default.
- W4309783485 cites W3036899731 @default.
- W4309783485 cites W3093869481 @default.
- W4309783485 cites W3118860610 @default.
- W4309783485 cites W3126075911 @default.
- W4309783485 cites W3147233169 @default.
- W4309783485 cites W3154863786 @default.
- W4309783485 cites W3158384017 @default.
- W4309783485 cites W3164518465 @default.
- W4309783485 cites W3175872245 @default.
- W4309783485 cites W3199638341 @default.
- W4309783485 cites W4206695578 @default.
- W4309783485 cites W4287377064 @default.
- W4309783485 doi "https://doi.org/10.5194/gmd-15-8439-2022" @default.
- W4309783485 hasPublicationYear "2022" @default.
- W4309783485 type Work @default.
- W4309783485 citedByCount "0" @default.
- W4309783485 crossrefType "journal-article" @default.
- W4309783485 hasAuthorship W4309783485A5027312785 @default.
- W4309783485 hasAuthorship W4309783485A5039418285 @default.
- W4309783485 hasAuthorship W4309783485A5043773772 @default.
- W4309783485 hasAuthorship W4309783485A5057037925 @default.
- W4309783485 hasAuthorship W4309783485A5066054182 @default.
- W4309783485 hasAuthorship W4309783485A5066689451 @default.
- W4309783485 hasAuthorship W4309783485A5087873608 @default.
- W4309783485 hasBestOaLocation W43097834851 @default.
- W4309783485 hasConcept C108583219 @default.
- W4309783485 hasConcept C110157686 @default.
- W4309783485 hasConcept C115961682 @default.
- W4309783485 hasConcept C119857082 @default.
- W4309783485 hasConcept C124101348 @default.
- W4309783485 hasConcept C126314574 @default.
- W4309783485 hasConcept C137800194 @default.
- W4309783485 hasConcept C153294291 @default.
- W4309783485 hasConcept C154945302 @default.
- W4309783485 hasConcept C203332170 @default.
- W4309783485 hasConcept C205203396 @default.
- W4309783485 hasConcept C205649164 @default.
- W4309783485 hasConcept C31258907 @default.
- W4309783485 hasConcept C31972630 @default.
- W4309783485 hasConcept C41008148 @default.
- W4309783485 hasConceptScore W4309783485C108583219 @default.
- W4309783485 hasConceptScore W4309783485C110157686 @default.
- W4309783485 hasConceptScore W4309783485C115961682 @default.
- W4309783485 hasConceptScore W4309783485C119857082 @default.
- W4309783485 hasConceptScore W4309783485C124101348 @default.
- W4309783485 hasConceptScore W4309783485C126314574 @default.
- W4309783485 hasConceptScore W4309783485C137800194 @default.
- W4309783485 hasConceptScore W4309783485C153294291 @default.
- W4309783485 hasConceptScore W4309783485C154945302 @default.
- W4309783485 hasConceptScore W4309783485C203332170 @default.
- W4309783485 hasConceptScore W4309783485C205203396 @default.
- W4309783485 hasConceptScore W4309783485C205649164 @default.
- W4309783485 hasConceptScore W4309783485C31258907 @default.
- W4309783485 hasConceptScore W4309783485C31972630 @default.
- W4309783485 hasConceptScore W4309783485C41008148 @default.
- W4309783485 hasFunder F4320321001 @default.
- W4309783485 hasFunder F4320330743 @default.
- W4309783485 hasIssue "22" @default.
- W4309783485 hasLocation W43097834851 @default.
- W4309783485 hasLocation W43097834852 @default.