Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309784818> ?p ?o ?g. }
- W4309784818 endingPage "2960" @default.
- W4309784818 startingPage "2940" @default.
- W4309784818 abstract "<abstract><p>Incorporating self-diffusion and super-cross diffusion factors into the modeling approach enhances efficiency and realism by having a substantial impact on the scenario of pattern formation. Accordingly, this work analyzes self and super-cross diffusion for a predator-prey model. First, the stability of equilibrium points is explored. Utilizing stability analysis of local equilibrium points, we stabilize the properties that guarantee the emergence of the Turing instability. Weakly nonlinear analysis is used to get the amplitude equations at the Turing bifurcation point (WNA). The stability analysis of the amplitude equations establishes the conditions for the formation of small spots, hexagons, huge spots, squares, labyrinthine, and stripe patterns. Analytical findings have been validated using numerical simulations. Extensive data that may be used analytically and numerically to assess the effect of self-super-cross diffusion on a variety of predator-prey systems.</p></abstract>" @default.
- W4309784818 created "2022-11-29" @default.
- W4309784818 creator A5074690407 @default.
- W4309784818 creator A5076933538 @default.
- W4309784818 creator A5081449036 @default.
- W4309784818 creator A5081873979 @default.
- W4309784818 creator A5083354054 @default.
- W4309784818 date "2023-01-01" @default.
- W4309784818 modified "2023-10-18" @default.
- W4309784818 title "Pattern dynamics and Turing instability induced by self-super-cross-diffusive predator-prey model via amplitude equations" @default.
- W4309784818 cites W1490180844 @default.
- W4309784818 cites W1963999463 @default.
- W4309784818 cites W1973118029 @default.
- W4309784818 cites W1980661496 @default.
- W4309784818 cites W1990951070 @default.
- W4309784818 cites W1991279350 @default.
- W4309784818 cites W2004728046 @default.
- W4309784818 cites W2011556092 @default.
- W4309784818 cites W2013508562 @default.
- W4309784818 cites W2016568588 @default.
- W4309784818 cites W2020000869 @default.
- W4309784818 cites W2027319740 @default.
- W4309784818 cites W2027600065 @default.
- W4309784818 cites W2033463245 @default.
- W4309784818 cites W2034059913 @default.
- W4309784818 cites W2049165066 @default.
- W4309784818 cites W2057783419 @default.
- W4309784818 cites W2061147782 @default.
- W4309784818 cites W2067748671 @default.
- W4309784818 cites W2069655152 @default.
- W4309784818 cites W2070726868 @default.
- W4309784818 cites W2086126894 @default.
- W4309784818 cites W2086222060 @default.
- W4309784818 cites W2102265921 @default.
- W4309784818 cites W2117450472 @default.
- W4309784818 cites W2226255042 @default.
- W4309784818 cites W2335457302 @default.
- W4309784818 cites W2404985375 @default.
- W4309784818 cites W2416185827 @default.
- W4309784818 cites W2584937108 @default.
- W4309784818 cites W2678679134 @default.
- W4309784818 cites W2745197583 @default.
- W4309784818 cites W2770299407 @default.
- W4309784818 cites W2789806152 @default.
- W4309784818 cites W2792649268 @default.
- W4309784818 cites W2793560053 @default.
- W4309784818 cites W3016540197 @default.
- W4309784818 cites W3119119671 @default.
- W4309784818 cites W3153325369 @default.
- W4309784818 cites W4255777804 @default.
- W4309784818 doi "https://doi.org/10.3934/math.2023153" @default.
- W4309784818 hasPublicationYear "2023" @default.
- W4309784818 type Work @default.
- W4309784818 citedByCount "2" @default.
- W4309784818 countsByYear W43097848182023 @default.
- W4309784818 crossrefType "journal-article" @default.
- W4309784818 hasAuthorship W4309784818A5074690407 @default.
- W4309784818 hasAuthorship W4309784818A5076933538 @default.
- W4309784818 hasAuthorship W4309784818A5081449036 @default.
- W4309784818 hasAuthorship W4309784818A5081873979 @default.
- W4309784818 hasAuthorship W4309784818A5083354054 @default.
- W4309784818 hasBestOaLocation W43097848181 @default.
- W4309784818 hasConcept C112972136 @default.
- W4309784818 hasConcept C119857082 @default.
- W4309784818 hasConcept C121332964 @default.
- W4309784818 hasConcept C121864883 @default.
- W4309784818 hasConcept C134306372 @default.
- W4309784818 hasConcept C158622935 @default.
- W4309784818 hasConcept C180205008 @default.
- W4309784818 hasConcept C199360897 @default.
- W4309784818 hasConcept C207821765 @default.
- W4309784818 hasConcept C2781349735 @default.
- W4309784818 hasConcept C28826006 @default.
- W4309784818 hasConcept C33923547 @default.
- W4309784818 hasConcept C41008148 @default.
- W4309784818 hasConcept C57879066 @default.
- W4309784818 hasConcept C62520636 @default.
- W4309784818 hasConcept C69357855 @default.
- W4309784818 hasConcept C94766913 @default.
- W4309784818 hasConcept C9870796 @default.
- W4309784818 hasConceptScore W4309784818C112972136 @default.
- W4309784818 hasConceptScore W4309784818C119857082 @default.
- W4309784818 hasConceptScore W4309784818C121332964 @default.
- W4309784818 hasConceptScore W4309784818C121864883 @default.
- W4309784818 hasConceptScore W4309784818C134306372 @default.
- W4309784818 hasConceptScore W4309784818C158622935 @default.
- W4309784818 hasConceptScore W4309784818C180205008 @default.
- W4309784818 hasConceptScore W4309784818C199360897 @default.
- W4309784818 hasConceptScore W4309784818C207821765 @default.
- W4309784818 hasConceptScore W4309784818C2781349735 @default.
- W4309784818 hasConceptScore W4309784818C28826006 @default.
- W4309784818 hasConceptScore W4309784818C33923547 @default.
- W4309784818 hasConceptScore W4309784818C41008148 @default.
- W4309784818 hasConceptScore W4309784818C57879066 @default.
- W4309784818 hasConceptScore W4309784818C62520636 @default.
- W4309784818 hasConceptScore W4309784818C69357855 @default.
- W4309784818 hasConceptScore W4309784818C94766913 @default.
- W4309784818 hasConceptScore W4309784818C9870796 @default.