Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309785462> ?p ?o ?g. }
- W4309785462 endingPage "60" @default.
- W4309785462 startingPage "60" @default.
- W4309785462 abstract "Abstract The eROSITA X-ray telescope, launched in 2019, is predicted to observe roughly 100,000 galaxy clusters. Follow-up observations of these clusters from Chandra, for example, will be needed to resolve outstanding questions about galaxy cluster physics. Deep Chandra cluster observations are expensive, and it is unfeasible to follow up every eROSITA cluster, therefore the objects that are chosen for follow-up must be chosen with care. To address this, we have developed an algorithm for predicting longer-duration, background-free observations, based on mock eROSITA observations. We make use of the hydrodynamic cosmological simulation Magneticum , simulate eROSITA instrument conditions using SIXTE , and apply a novel convolutional neural network to output a deep Chandra-like “super observation” of each cluster in our simulation sample. Any follow-up merit assessment tool should be designed with a specific use case in mind; our model produces observations that accurately and precisely reproduce the cluster morphology, which is a critical ingredient for determining a cluster’s dynamical state and core type. Our model will advance our understanding of galaxy clusters by improving follow-up selection, and it demonstrates that image-to-image deep learning algorithms are a viable method for simulating realistic follow-up observations." @default.
- W4309785462 created "2022-11-29" @default.
- W4309785462 creator A5009459970 @default.
- W4309785462 creator A5025149406 @default.
- W4309785462 creator A5025166977 @default.
- W4309785462 creator A5045187390 @default.
- W4309785462 creator A5070787181 @default.
- W4309785462 creator A5072513422 @default.
- W4309785462 creator A5075759539 @default.
- W4309785462 creator A5086464324 @default.
- W4309785462 date "2022-11-01" @default.
- W4309785462 modified "2023-10-11" @default.
- W4309785462 title "A Machine-learning Approach to Enhancing eROSITA Observations" @default.
- W4309785462 cites W1484475650 @default.
- W4309785462 cites W1967766027 @default.
- W4309785462 cites W1978193295 @default.
- W4309785462 cites W1979140813 @default.
- W4309785462 cites W1982947903 @default.
- W4309785462 cites W1990930372 @default.
- W4309785462 cites W1998515260 @default.
- W4309785462 cites W2011301426 @default.
- W4309785462 cites W2012032378 @default.
- W4309785462 cites W2035936423 @default.
- W4309785462 cites W2058379217 @default.
- W4309785462 cites W2084461563 @default.
- W4309785462 cites W2088909704 @default.
- W4309785462 cites W2096825304 @default.
- W4309785462 cites W2104900201 @default.
- W4309785462 cites W2108382396 @default.
- W4309785462 cites W2111396801 @default.
- W4309785462 cites W2133030092 @default.
- W4309785462 cites W2135625048 @default.
- W4309785462 cites W2141968105 @default.
- W4309785462 cites W2141971031 @default.
- W4309785462 cites W2147875900 @default.
- W4309785462 cites W2170608748 @default.
- W4309785462 cites W2177551589 @default.
- W4309785462 cites W2301117188 @default.
- W4309785462 cites W2415362088 @default.
- W4309785462 cites W2525497376 @default.
- W4309785462 cites W2616298216 @default.
- W4309785462 cites W2743019444 @default.
- W4309785462 cites W2804191040 @default.
- W4309785462 cites W2884182704 @default.
- W4309785462 cites W2888532099 @default.
- W4309785462 cites W2890284792 @default.
- W4309785462 cites W2907489335 @default.
- W4309785462 cites W2919115771 @default.
- W4309785462 cites W2922697311 @default.
- W4309785462 cites W2948507243 @default.
- W4309785462 cites W2962839751 @default.
- W4309785462 cites W2963880253 @default.
- W4309785462 cites W2964716939 @default.
- W4309785462 cites W2965700406 @default.
- W4309785462 cites W3035876976 @default.
- W4309785462 cites W3098463180 @default.
- W4309785462 cites W3098614922 @default.
- W4309785462 cites W3099091741 @default.
- W4309785462 cites W3099921664 @default.
- W4309785462 cites W3100294950 @default.
- W4309785462 cites W3100377699 @default.
- W4309785462 cites W3101728524 @default.
- W4309785462 cites W3102051593 @default.
- W4309785462 cites W3102292655 @default.
- W4309785462 cites W3102887027 @default.
- W4309785462 cites W3103913848 @default.
- W4309785462 cites W3105494006 @default.
- W4309785462 cites W3105672105 @default.
- W4309785462 cites W3106008814 @default.
- W4309785462 cites W3121225038 @default.
- W4309785462 cites W3122008711 @default.
- W4309785462 cites W3160508823 @default.
- W4309785462 cites W3174313610 @default.
- W4309785462 cites W3187373166 @default.
- W4309785462 cites W3203172215 @default.
- W4309785462 cites W4213376404 @default.
- W4309785462 cites W4229002241 @default.
- W4309785462 cites W4246202668 @default.
- W4309785462 cites W4250310729 @default.
- W4309785462 cites W4296137010 @default.
- W4309785462 cites W4317529009 @default.
- W4309785462 cites W601942803 @default.
- W4309785462 doi "https://doi.org/10.3847/1538-4357/ac9b1b" @default.
- W4309785462 hasPublicationYear "2022" @default.
- W4309785462 type Work @default.
- W4309785462 citedByCount "1" @default.
- W4309785462 countsByYear W43097854622023 @default.
- W4309785462 crossrefType "journal-article" @default.
- W4309785462 hasAuthorship W4309785462A5009459970 @default.
- W4309785462 hasAuthorship W4309785462A5025149406 @default.
- W4309785462 hasAuthorship W4309785462A5025166977 @default.
- W4309785462 hasAuthorship W4309785462A5045187390 @default.
- W4309785462 hasAuthorship W4309785462A5070787181 @default.
- W4309785462 hasAuthorship W4309785462A5072513422 @default.
- W4309785462 hasAuthorship W4309785462A5075759539 @default.
- W4309785462 hasAuthorship W4309785462A5086464324 @default.
- W4309785462 hasBestOaLocation W43097854621 @default.
- W4309785462 hasConcept C121332964 @default.