Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309791427> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4309791427 endingPage "012040" @default.
- W4309791427 startingPage "012040" @default.
- W4309791427 abstract "Floods are among the most destructive natural disasters, and they are extremely difficult to model. Over the last two decades, machine learning (ML) methods have made significant contributions to the advancement of prediction systems that provide better performance and cost-effective solutions by mimicking the complex mathematical expressions of physical flood processes. Because of the numerous benefits and potential of ML, its popularity has skyrocketed. Researchers hope to discover more accurate and efficient prediction models by introducing novel ML methods and hybridising existing ones. The main focus of this paper is to show the state of the art of hybridising ML models in flood prediction. The most effective strategies for improving ML methods are hybridization, data decomposition, algorithm ensemble, and model optimization." @default.
- W4309791427 created "2022-11-29" @default.
- W4309791427 creator A5013732885 @default.
- W4309791427 creator A5050789049 @default.
- W4309791427 creator A5068312294 @default.
- W4309791427 creator A5087539282 @default.
- W4309791427 date "2022-11-01" @default.
- W4309791427 modified "2023-09-25" @default.
- W4309791427 title "Review of flood prediction hybrid machine learning models using datasets" @default.
- W4309791427 cites W1197692462 @default.
- W4309791427 cites W1975609594 @default.
- W4309791427 cites W1986933555 @default.
- W4309791427 cites W2005120494 @default.
- W4309791427 cites W2005494734 @default.
- W4309791427 cites W2009085104 @default.
- W4309791427 cites W2031998728 @default.
- W4309791427 cites W2039813705 @default.
- W4309791427 cites W2177099584 @default.
- W4309791427 cites W2257979135 @default.
- W4309791427 cites W2585298970 @default.
- W4309791427 cites W2593388048 @default.
- W4309791427 cites W2596421834 @default.
- W4309791427 cites W2622931222 @default.
- W4309791427 cites W2623181128 @default.
- W4309791427 cites W2734256217 @default.
- W4309791427 cites W2781966779 @default.
- W4309791427 cites W2884430236 @default.
- W4309791427 cites W2895196240 @default.
- W4309791427 cites W2951934944 @default.
- W4309791427 cites W3016829663 @default.
- W4309791427 cites W3025162817 @default.
- W4309791427 cites W3037173620 @default.
- W4309791427 cites W3089254899 @default.
- W4309791427 cites W3136213226 @default.
- W4309791427 cites W3149620928 @default.
- W4309791427 cites W3209081405 @default.
- W4309791427 doi "https://doi.org/10.1088/1755-1315/1091/1/012040" @default.
- W4309791427 hasPublicationYear "2022" @default.
- W4309791427 type Work @default.
- W4309791427 citedByCount "0" @default.
- W4309791427 crossrefType "journal-article" @default.
- W4309791427 hasAuthorship W4309791427A5013732885 @default.
- W4309791427 hasAuthorship W4309791427A5050789049 @default.
- W4309791427 hasAuthorship W4309791427A5068312294 @default.
- W4309791427 hasAuthorship W4309791427A5087539282 @default.
- W4309791427 hasConcept C119857082 @default.
- W4309791427 hasConcept C120665830 @default.
- W4309791427 hasConcept C121332964 @default.
- W4309791427 hasConcept C124101348 @default.
- W4309791427 hasConcept C124681953 @default.
- W4309791427 hasConcept C154945302 @default.
- W4309791427 hasConcept C15744967 @default.
- W4309791427 hasConcept C166957645 @default.
- W4309791427 hasConcept C18903297 @default.
- W4309791427 hasConcept C192209626 @default.
- W4309791427 hasConcept C205649164 @default.
- W4309791427 hasConcept C2780586970 @default.
- W4309791427 hasConcept C41008148 @default.
- W4309791427 hasConcept C45804977 @default.
- W4309791427 hasConcept C74256435 @default.
- W4309791427 hasConcept C77805123 @default.
- W4309791427 hasConcept C86803240 @default.
- W4309791427 hasConceptScore W4309791427C119857082 @default.
- W4309791427 hasConceptScore W4309791427C120665830 @default.
- W4309791427 hasConceptScore W4309791427C121332964 @default.
- W4309791427 hasConceptScore W4309791427C124101348 @default.
- W4309791427 hasConceptScore W4309791427C124681953 @default.
- W4309791427 hasConceptScore W4309791427C154945302 @default.
- W4309791427 hasConceptScore W4309791427C15744967 @default.
- W4309791427 hasConceptScore W4309791427C166957645 @default.
- W4309791427 hasConceptScore W4309791427C18903297 @default.
- W4309791427 hasConceptScore W4309791427C192209626 @default.
- W4309791427 hasConceptScore W4309791427C205649164 @default.
- W4309791427 hasConceptScore W4309791427C2780586970 @default.
- W4309791427 hasConceptScore W4309791427C41008148 @default.
- W4309791427 hasConceptScore W4309791427C45804977 @default.
- W4309791427 hasConceptScore W4309791427C74256435 @default.
- W4309791427 hasConceptScore W4309791427C77805123 @default.
- W4309791427 hasConceptScore W4309791427C86803240 @default.
- W4309791427 hasIssue "1" @default.
- W4309791427 hasLocation W43097914271 @default.
- W4309791427 hasOpenAccess W4309791427 @default.
- W4309791427 hasPrimaryLocation W43097914271 @default.
- W4309791427 hasRelatedWork W2133515697 @default.
- W4309791427 hasRelatedWork W2975597301 @default.
- W4309791427 hasRelatedWork W3160244858 @default.
- W4309791427 hasRelatedWork W4221031036 @default.
- W4309791427 hasRelatedWork W4223943233 @default.
- W4309791427 hasRelatedWork W4312949351 @default.
- W4309791427 hasRelatedWork W4318612353 @default.
- W4309791427 hasRelatedWork W4327500866 @default.
- W4309791427 hasRelatedWork W4366376591 @default.
- W4309791427 hasRelatedWork W4379532240 @default.
- W4309791427 hasVolume "1091" @default.
- W4309791427 isParatext "false" @default.
- W4309791427 isRetracted "false" @default.
- W4309791427 workType "article" @default.