Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309796692> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4309796692 endingPage "112" @default.
- W4309796692 startingPage "112" @default.
- W4309796692 abstract "The formation process of lithium-ion battery cells is one of the main contributors to the overall cell cost [1]. During this process step the solid electrolyte interface (SEI) is initially built. It is agreed upon that the composition and morphology of the SEI influences the safety and aging behaviour of the battery cell. However, the processes behind the initial build-up are not fully understood due to the manifold influencing factors, such as electrolyte composition, electrode structure, temperature, and formation protocol, which all impact the complex nanoscale processes at the interface [2,3,4]. High experimental effort is needed to investigate and optimize this process. Detailed multiscale models based on first principles can provide insights into the SEI formation but require many parameters that are difficult to determine and are also associated with uncertainty [5,6]. Therefore, those approaches are limited in terms of exploration and optimization of the formation process. Hence, there is a need for novel methods that enable to obtain information about the SEI growth and investigate the influential factors to effectively accelerate the development process. Here, we suggest a model-based approach that uses lumped growth models that can quickly be identified by using differential voltage data of formation experiments. Further, models are applied to simulate the impact of the formation protocol on the SEI formation with minimal experimental effort. Firstly, we present a parameter identification process for the applied growth model, which is based on a slow formation protocol and a reference measurement in a 3-electrode setup. The parameterization of the SEI model is conducted by combining coulometry and differential voltage analysis (DVA). Shifts of distinct peaks, i.e. feature, within the anode potential curve during the formation and the reference measurement are used to deduce the capacity loss due to the SEI growth. Using the SEI density and surface area of the electrode, the capacity loss is converted into an effective layer thickness, which is used to fit the parameters of the growth model. Within the SEI model different growth mechanisms can be implemented and compared. It is demonstrated that this approach can show differences in the SEI formation for a variation of electrolyte compositions, i.e. the electrolyte additives as can be seen in Figure 1. Afterwards, a simulation study for different formation protocols is presented. The identified growth model has been coupled with a pseudo-2-dimensional (P2D) model. Simulations are also compared to experimental data for various formation protocols and are shown to be in good agreement. Simulations reveal that the final effective film thickness is only slightly affected by current magnitude and mainly depends on the formation time as well as the anode potential. Furthermore, it can be seen that higher formation currents affect the homogeneity of the SEI across the electrode negatively. To sum up, the DVA analysis of the formation yields information about the SEI growth. This can be used to parametrize SEI growth models and investigate film growth mechanisms for different electrolyte compositions. Coupling growth models with P2D models enables to explore the influence of the formation protocols. To conclude, this novel approach enables to significantly accelerate the optimization of battery cell formation. In future work the approach could be refined to enable application to full cell voltage data, which would allow its use within battery production lines and could support end of line testing. [1] A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Dröder, Current status and challenges for automotive battery production technologies, Nature Energy , 2018, 3, DOI: 10.1038/s41560-018-0130-3 [2] G. E. Blomgren, Liquid electrolytes for lithium and lithium-ion batteries, Journal of Power Sources , 2003, 119, DOI: 10.1016/S0378-7753(03)00147-2 [3] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon , 2016, 105, DOI: 10.1016/j.carbon.2016.04.008. [4] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chemical reviews , 2014, 114(23), DOI: 10.1021/cr500003w. [5] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials , 2018, 4, DOI: 10.1038/s41524-018-0064-0 [6] F. Röder, R. D. Braatz, U. Krewer, Multi-scale simulation of heterogeneous surface film growth mechanisms in lithium-ion batteries, Journal of the Electrochemical Society , 2017, 164 (11), DOI: 10.1149/2.0241711jes. Figure 1" @default.
- W4309796692 created "2022-11-29" @default.
- W4309796692 creator A5020277918 @default.
- W4309796692 creator A5037645294 @default.
- W4309796692 creator A5054862018 @default.
- W4309796692 date "2022-10-09" @default.
- W4309796692 modified "2023-09-28" @default.
- W4309796692 title "Characterization and Model-Based Investigation of Lithium-Ion Battery Cell Formation" @default.
- W4309796692 doi "https://doi.org/10.1149/ma2022-022112mtgabs" @default.
- W4309796692 hasPublicationYear "2022" @default.
- W4309796692 type Work @default.
- W4309796692 citedByCount "0" @default.
- W4309796692 crossrefType "journal-article" @default.
- W4309796692 hasAuthorship W4309796692A5020277918 @default.
- W4309796692 hasAuthorship W4309796692A5037645294 @default.
- W4309796692 hasAuthorship W4309796692A5054862018 @default.
- W4309796692 hasConcept C111919701 @default.
- W4309796692 hasConcept C113843644 @default.
- W4309796692 hasConcept C119599485 @default.
- W4309796692 hasConcept C121332964 @default.
- W4309796692 hasConcept C127413603 @default.
- W4309796692 hasConcept C129307140 @default.
- W4309796692 hasConcept C142724271 @default.
- W4309796692 hasConcept C147789679 @default.
- W4309796692 hasConcept C157915830 @default.
- W4309796692 hasConcept C163258240 @default.
- W4309796692 hasConcept C165801399 @default.
- W4309796692 hasConcept C171250308 @default.
- W4309796692 hasConcept C173608175 @default.
- W4309796692 hasConcept C17525397 @default.
- W4309796692 hasConcept C185592680 @default.
- W4309796692 hasConcept C186060115 @default.
- W4309796692 hasConcept C192562407 @default.
- W4309796692 hasConcept C204787440 @default.
- W4309796692 hasConcept C21880701 @default.
- W4309796692 hasConcept C2779197387 @default.
- W4309796692 hasConcept C2780385302 @default.
- W4309796692 hasConcept C2780841128 @default.
- W4309796692 hasConcept C41008148 @default.
- W4309796692 hasConcept C44154836 @default.
- W4309796692 hasConcept C555008776 @default.
- W4309796692 hasConcept C68801617 @default.
- W4309796692 hasConcept C71924100 @default.
- W4309796692 hasConcept C86803240 @default.
- W4309796692 hasConcept C97355855 @default.
- W4309796692 hasConcept C98045186 @default.
- W4309796692 hasConceptScore W4309796692C111919701 @default.
- W4309796692 hasConceptScore W4309796692C113843644 @default.
- W4309796692 hasConceptScore W4309796692C119599485 @default.
- W4309796692 hasConceptScore W4309796692C121332964 @default.
- W4309796692 hasConceptScore W4309796692C127413603 @default.
- W4309796692 hasConceptScore W4309796692C129307140 @default.
- W4309796692 hasConceptScore W4309796692C142724271 @default.
- W4309796692 hasConceptScore W4309796692C147789679 @default.
- W4309796692 hasConceptScore W4309796692C157915830 @default.
- W4309796692 hasConceptScore W4309796692C163258240 @default.
- W4309796692 hasConceptScore W4309796692C165801399 @default.
- W4309796692 hasConceptScore W4309796692C171250308 @default.
- W4309796692 hasConceptScore W4309796692C173608175 @default.
- W4309796692 hasConceptScore W4309796692C17525397 @default.
- W4309796692 hasConceptScore W4309796692C185592680 @default.
- W4309796692 hasConceptScore W4309796692C186060115 @default.
- W4309796692 hasConceptScore W4309796692C192562407 @default.
- W4309796692 hasConceptScore W4309796692C204787440 @default.
- W4309796692 hasConceptScore W4309796692C21880701 @default.
- W4309796692 hasConceptScore W4309796692C2779197387 @default.
- W4309796692 hasConceptScore W4309796692C2780385302 @default.
- W4309796692 hasConceptScore W4309796692C2780841128 @default.
- W4309796692 hasConceptScore W4309796692C41008148 @default.
- W4309796692 hasConceptScore W4309796692C44154836 @default.
- W4309796692 hasConceptScore W4309796692C555008776 @default.
- W4309796692 hasConceptScore W4309796692C68801617 @default.
- W4309796692 hasConceptScore W4309796692C71924100 @default.
- W4309796692 hasConceptScore W4309796692C86803240 @default.
- W4309796692 hasConceptScore W4309796692C97355855 @default.
- W4309796692 hasConceptScore W4309796692C98045186 @default.
- W4309796692 hasIssue "2" @default.
- W4309796692 hasLocation W43097966921 @default.
- W4309796692 hasOpenAccess W4309796692 @default.
- W4309796692 hasPrimaryLocation W43097966921 @default.
- W4309796692 hasRelatedWork W2004550135 @default.
- W4309796692 hasRelatedWork W2150081591 @default.
- W4309796692 hasRelatedWork W2347674689 @default.
- W4309796692 hasRelatedWork W2353180465 @default.
- W4309796692 hasRelatedWork W2356976307 @default.
- W4309796692 hasRelatedWork W2371140212 @default.
- W4309796692 hasRelatedWork W3024225690 @default.
- W4309796692 hasRelatedWork W3096098225 @default.
- W4309796692 hasRelatedWork W3116461026 @default.
- W4309796692 hasRelatedWork W138720103 @default.
- W4309796692 hasVolume "MA2022-02" @default.
- W4309796692 isParatext "false" @default.
- W4309796692 isRetracted "false" @default.
- W4309796692 workType "article" @default.