Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309797166> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4309797166 abstract "Abstract Nearly four hundred different samples of jet and diesel fuels were used to train and test Machine Learning (ML) models for Derived Cetane Number (DCN – ASTM D6890) prediction using eight of the fuels’ physical properties as model inputs. Linear Regression (LR), Artificial Neural Networks (ANNs) and Gaussian based models all showed good performance predicting DCN with nominal prediction errors of 1 to 1.7 cetane numbers (CN). Shallow ANNs showed comparable prediction results as compared to LR, with the Gaussian Exponential Model yielding the best results overall. The DCN prediction models were exercised to observe the most critical-sensitive properties in the DCN prediction. Fuel density and T50 were seen to be the most important for both jet and diesel fuels. This result supports the usage of these two properties in cetane number prediction via the Cetane Index (CI) calculation (ASTM D976). Flash point and Tend of the distillation curve were of secondary importance. Additionally, jet fuel chemical composition data from 8 chemical fuel classes were applied to predict DCN. Adding the chemical composition data to the physical property data did not provide for improved DCN prediction. This result supports the coupling and connection between a fuel’s physical and chemical properties. An analysis of the most important (to DCN) fuel classes shows alkanes (high cetane) and alkyl-benzene (low cetane) components to be the most influential. Finally, fuel similarity was characterized using Self Organizing Maps (SOMs). The SOM map was trained for both jet and diesel fuels using physical properties alone. Different fuels (e.g. alternative Alcohol-to-Jet) were then applied to the SOM to test similarity. SOM Position and Quantization Error are shown to accurately characterize these fuels as significantly different than the conventional jet and diesel fuels used to establish the SOM." @default.
- W4309797166 created "2022-11-29" @default.
- W4309797166 creator A5003066159 @default.
- W4309797166 creator A5052106020 @default.
- W4309797166 creator A5052591285 @default.
- W4309797166 creator A5056706062 @default.
- W4309797166 date "2022-10-16" @default.
- W4309797166 modified "2023-09-26" @default.
- W4309797166 title "Using Machine Learning to Predict Derived Cetane Number and Fuel Similarity" @default.
- W4309797166 doi "https://doi.org/10.1115/icef2022-89295" @default.
- W4309797166 hasPublicationYear "2022" @default.
- W4309797166 type Work @default.
- W4309797166 citedByCount "0" @default.
- W4309797166 crossrefType "proceedings-article" @default.
- W4309797166 hasAuthorship W4309797166A5003066159 @default.
- W4309797166 hasAuthorship W4309797166A5052106020 @default.
- W4309797166 hasAuthorship W4309797166A5052591285 @default.
- W4309797166 hasAuthorship W4309797166A5056706062 @default.
- W4309797166 hasConcept C127413603 @default.
- W4309797166 hasConcept C138171918 @default.
- W4309797166 hasConcept C154945302 @default.
- W4309797166 hasConcept C161790260 @default.
- W4309797166 hasConcept C178790620 @default.
- W4309797166 hasConcept C180511626 @default.
- W4309797166 hasConcept C185592680 @default.
- W4309797166 hasConcept C204030448 @default.
- W4309797166 hasConcept C41008148 @default.
- W4309797166 hasConcept C50644808 @default.
- W4309797166 hasConcept C52896960 @default.
- W4309797166 hasConcept C548081761 @default.
- W4309797166 hasConcept C55062507 @default.
- W4309797166 hasConcept C78519656 @default.
- W4309797166 hasConcept C8567792 @default.
- W4309797166 hasConceptScore W4309797166C127413603 @default.
- W4309797166 hasConceptScore W4309797166C138171918 @default.
- W4309797166 hasConceptScore W4309797166C154945302 @default.
- W4309797166 hasConceptScore W4309797166C161790260 @default.
- W4309797166 hasConceptScore W4309797166C178790620 @default.
- W4309797166 hasConceptScore W4309797166C180511626 @default.
- W4309797166 hasConceptScore W4309797166C185592680 @default.
- W4309797166 hasConceptScore W4309797166C204030448 @default.
- W4309797166 hasConceptScore W4309797166C41008148 @default.
- W4309797166 hasConceptScore W4309797166C50644808 @default.
- W4309797166 hasConceptScore W4309797166C52896960 @default.
- W4309797166 hasConceptScore W4309797166C548081761 @default.
- W4309797166 hasConceptScore W4309797166C55062507 @default.
- W4309797166 hasConceptScore W4309797166C78519656 @default.
- W4309797166 hasConceptScore W4309797166C8567792 @default.
- W4309797166 hasLocation W43097971661 @default.
- W4309797166 hasOpenAccess W4309797166 @default.
- W4309797166 hasPrimaryLocation W43097971661 @default.
- W4309797166 hasRelatedWork W1004000898 @default.
- W4309797166 hasRelatedWork W1040078890 @default.
- W4309797166 hasRelatedWork W16418833 @default.
- W4309797166 hasRelatedWork W1970015053 @default.
- W4309797166 hasRelatedWork W2271318235 @default.
- W4309797166 hasRelatedWork W2328456137 @default.
- W4309797166 hasRelatedWork W2516328892 @default.
- W4309797166 hasRelatedWork W2622842941 @default.
- W4309797166 hasRelatedWork W3204263586 @default.
- W4309797166 hasRelatedWork W978337168 @default.
- W4309797166 isParatext "false" @default.
- W4309797166 isRetracted "false" @default.
- W4309797166 workType "article" @default.