Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309811404> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4309811404 endingPage "1033" @default.
- W4309811404 startingPage "1033" @default.
- W4309811404 abstract "A key component of the emerging hydrogen energy economy is the distribution system which facilitates the movement of hydrogen energy between production and end-use. There is interest in valorization of existing gas systems, which today are dedicated to natural gas movement, to facilitate the co-transportation of hydrogen via blending of hydrogen gas into these gas systems at concentrations up to 20% H 2 by volume [1]. Fuel cell quality hydrogen, at a purity of 99.97%> H 2 , is required for the most valuable energy end-uses of hydrogen gas and thus the ability to efficiently extract H 2 gas at such high purity is critical to the adoption of natural gas infrastructure as a means of co-transportation and distribution. Electrochemical hydrogen pump (EHP) utilizes a proton conducting membrane to separate hydrogen from mixtures by driving the electrochemical process of oxidation of hydrogen at an anode and subsequent evolution of hydrogen gas at a cathode, while other gaseous impurities are ideally unable to permeate through the membrane. HT-PEM EHP based on polybenzimidazole (PBI) membranes doped with phosphoric acid exhibit high proton conductivities at temperatures in the range of 160C Celsius while also exhibiting characteristics that are complimentary to their application in gas separation processes. These characteristics include a limited tolerance to common sources of platinum catalyst inhibition such as CO [1] and the presence of an aqueous phosphoric acid phase inhibits gas cross-over, providing better product purity although at the cost of performance in the form of catalyst inhibition. A two-dimensional model based on an HT-PEM system employing a phosphoric acid doped PBI membrane and free phosphoric acid as the proton conducting phase of the catalyst layer is developed to better understand the underlying processes governing the performance of the EHP. The model is validated with experimental measurements with mixtures as low as 2% H 2 by volume in methane. In-operando micro-CT imaging of an HT-PEM EHP cell taken at the LBNL Advanced Light Source (ALS) is used to further validate physical parameters and assumptions of the model. The influence of differential pressure, relative humidity of the feed, and concentration of feed gases on separation performance are investigated. Losses due to back-permeation of hydrogen under pressure are accounted for. Power-loss voltage breakdown analysis indicates appreciable losses due to proton transport in the relatively thick catalyst layer, and the dependence of these losses on the volume fraction of acid present (Figure 1). The influence of CO 2 as a catalyst inhibiting contaminant as was previously observed in low temperature EHP [3] is examined. The model and experiments show that a specific energy of separation of 5.1 kWh/kg H 2 at a hydrogen recovery factor (HRF) of 50% can be achieved in a single stage with the EHP, producing 99.995% > H 2 from a 2% H 2 in CH 4 blend, while pressurizing the product H 2 at a product pressure ratio of 1.3 relative to feed pressure. Bibliography [1] C. J. Quarton and S. Samsatli, Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?, Renewable and Sustainable Energy Reviews, vol. 98, pp. 302-316, 2018. [2] K. Perry and B. B. Eisman G.A., Electrochemical hydrogen pumping using a high-temperature polybenzimidazole (PBI) membrane, Journal of Power Sources, pp. 478-484, 2008. [3] N. e. al., Effect of CO2 on the performance of an electrochemical hydrogen compressor, Chemical Engineering Journal, vol. 329, 2020. Figure 1" @default.
- W4309811404 created "2022-11-29" @default.
- W4309811404 creator A5008806441 @default.
- W4309811404 creator A5015137668 @default.
- W4309811404 creator A5053385848 @default.
- W4309811404 creator A5059345639 @default.
- W4309811404 creator A5091861424 @default.
- W4309811404 date "2022-10-09" @default.
- W4309811404 modified "2023-09-28" @default.
- W4309811404 title "Two-Dimensional Model of a High-Temperature Proton Exchange Membrane Hydrogen Pump for Efficient, Single-Stage Separation of Fuel Cell Quality Hydrogen Gas from Hydrogen-Enriched Natural Gas" @default.
- W4309811404 doi "https://doi.org/10.1149/ma2022-02271033mtgabs" @default.
- W4309811404 hasPublicationYear "2022" @default.
- W4309811404 type Work @default.
- W4309811404 citedByCount "0" @default.
- W4309811404 crossrefType "journal-article" @default.
- W4309811404 hasAuthorship W4309811404A5008806441 @default.
- W4309811404 hasAuthorship W4309811404A5015137668 @default.
- W4309811404 hasAuthorship W4309811404A5053385848 @default.
- W4309811404 hasAuthorship W4309811404A5059345639 @default.
- W4309811404 hasAuthorship W4309811404A5091861424 @default.
- W4309811404 hasConcept C127413603 @default.
- W4309811404 hasConcept C129174363 @default.
- W4309811404 hasConcept C132319479 @default.
- W4309811404 hasConcept C161790260 @default.
- W4309811404 hasConcept C178790620 @default.
- W4309811404 hasConcept C179104552 @default.
- W4309811404 hasConcept C185592680 @default.
- W4309811404 hasConcept C192562407 @default.
- W4309811404 hasConcept C202189072 @default.
- W4309811404 hasConcept C2776622989 @default.
- W4309811404 hasConcept C42360764 @default.
- W4309811404 hasConcept C512968161 @default.
- W4309811404 hasConcept C59427239 @default.
- W4309811404 hasConcept C68044625 @default.
- W4309811404 hasConcept C68170385 @default.
- W4309811404 hasConceptScore W4309811404C127413603 @default.
- W4309811404 hasConceptScore W4309811404C129174363 @default.
- W4309811404 hasConceptScore W4309811404C132319479 @default.
- W4309811404 hasConceptScore W4309811404C161790260 @default.
- W4309811404 hasConceptScore W4309811404C178790620 @default.
- W4309811404 hasConceptScore W4309811404C179104552 @default.
- W4309811404 hasConceptScore W4309811404C185592680 @default.
- W4309811404 hasConceptScore W4309811404C192562407 @default.
- W4309811404 hasConceptScore W4309811404C202189072 @default.
- W4309811404 hasConceptScore W4309811404C2776622989 @default.
- W4309811404 hasConceptScore W4309811404C42360764 @default.
- W4309811404 hasConceptScore W4309811404C512968161 @default.
- W4309811404 hasConceptScore W4309811404C59427239 @default.
- W4309811404 hasConceptScore W4309811404C68044625 @default.
- W4309811404 hasConceptScore W4309811404C68170385 @default.
- W4309811404 hasIssue "27" @default.
- W4309811404 hasLocation W43098114041 @default.
- W4309811404 hasOpenAccess W4309811404 @default.
- W4309811404 hasPrimaryLocation W43098114041 @default.
- W4309811404 hasRelatedWork W1986738772 @default.
- W4309811404 hasRelatedWork W2017599941 @default.
- W4309811404 hasRelatedWork W2082336488 @default.
- W4309811404 hasRelatedWork W2166646712 @default.
- W4309811404 hasRelatedWork W2324173993 @default.
- W4309811404 hasRelatedWork W3188722110 @default.
- W4309811404 hasRelatedWork W3212124939 @default.
- W4309811404 hasRelatedWork W4309811404 @default.
- W4309811404 hasRelatedWork W65852180 @default.
- W4309811404 hasRelatedWork W2181821799 @default.
- W4309811404 hasVolume "MA2022-02" @default.
- W4309811404 isParatext "false" @default.
- W4309811404 isRetracted "false" @default.
- W4309811404 workType "article" @default.