Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309811810> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4309811810 endingPage "1013" @default.
- W4309811810 startingPage "1013" @default.
- W4309811810 abstract "Recent years has seen a tremendous growth in finding electrochemical pathways to produce chemicals and fuels because it is believed that pairing low-carbon electricity (solar, wind, nuclear) with renewable carbon sources and electrochemical processes will lead to a reduction in greenhouse gas emissions. One of the possible sources renewable carbon is biomass. During biomass upgrading, one of the byproducts is bio-oil, which contains a large amount of acetic acid. Acetic acid itself is a relatively low value product. Upgrading acetic acid (or its alkaline counterpart acetate) to a wider range of valuable products (e.g., methanol, ethylene) is extremely attractive. This can be done through thermochemical or electrochemical partial oxidation. Though acetic acid reactions have been studied for many years, details about its overall reaction mechanism still remain unknown. The most known and defended pathway in the literature is Kolbe electrolysis, where C-C bonds are formed from dimerization of methyl radicals as shown in Equation 1. 2CH 3 COOH → 2CO 2 + C 2 H 6 + 2H + + 2e - (Equation 1) However, aqueous environments have shown deviations from this dimerization. It is often overlooked that these reactions occur at high potentials and the state and role of the formed surface oxide are not well described in the literature. It is even not known what water-oxide mechanism dominates for the formation of alcohol-based products. Although prior work has shown that a three-electrode batch cell can produce the typical Kolbe products (ethane and carbon dioxide) at high faradaic efficiencies and steady state when the electrolyte bath is held at the pKa (4.7) and high voltage (>3.0V vs. RHE) – our previous studies have shown that the reaction environment (e.g. concentration, addition of supporting electrolyte, pH) can vary the effluent composition and reaction rate considerably. Also, our recent work has shown that transitioning the same catalyst to a lower-water environment in a flow cell can yield a completely different product profile than in aqueous media. Therefore, the purpose of this study is to demonstrate how the catalyst and reacting environment affect the formation of various C1 and C2 products from acetate electrochemical oxidation. To do this, custom-made two-electrode (similar to an alkaline exchange membrane electrolyzer) and three-electrode cells are used. Another variable that is manipulated is the voltage profile, where both constant voltage and pulsed experiments are performed. In the flow cell, several anode electrocatalysts (e.g., Pt, PtRu, NiO, IrO x ) were dispersed in inks and sprayed onto porous transport layers. The anode feed was 0.5M potassium acetate. No gases were fed to the cathode, but hydrogen was collected from the exhaust. The anode effluent (gas and liquid mixture) was separated downstream in a simple vessel with UHP helium flowing through the incoming effluent to carry the gas for GC/MS analysis. Liquid samples were analyzed by ex situ and NMR with D 2 O solvent. Two-electrode and three-electrode results will be combined to provide new insights into acetate oxidation and pathways for future research and development will be discussed." @default.
- W4309811810 created "2022-11-29" @default.
- W4309811810 creator A5005576564 @default.
- W4309811810 creator A5042624178 @default.
- W4309811810 creator A5069098457 @default.
- W4309811810 creator A5089397078 @default.
- W4309811810 date "2022-10-09" @default.
- W4309811810 modified "2023-09-30" @default.
- W4309811810 title "Mechanistic Insight from Acetate Oxidation in Three-Electrode Cells and Flow Cells" @default.
- W4309811810 doi "https://doi.org/10.1149/ma2022-02261013mtgabs" @default.
- W4309811810 hasPublicationYear "2022" @default.
- W4309811810 type Work @default.
- W4309811810 citedByCount "0" @default.
- W4309811810 crossrefType "journal-article" @default.
- W4309811810 hasAuthorship W4309811810A5005576564 @default.
- W4309811810 hasAuthorship W4309811810A5042624178 @default.
- W4309811810 hasAuthorship W4309811810A5069098457 @default.
- W4309811810 hasAuthorship W4309811810A5089397078 @default.
- W4309811810 hasConcept C104779481 @default.
- W4309811810 hasConcept C111368507 @default.
- W4309811810 hasConcept C115540264 @default.
- W4309811810 hasConcept C127313418 @default.
- W4309811810 hasConcept C127413603 @default.
- W4309811810 hasConcept C139066938 @default.
- W4309811810 hasConcept C140205800 @default.
- W4309811810 hasConcept C147789679 @default.
- W4309811810 hasConcept C159985019 @default.
- W4309811810 hasConcept C161790260 @default.
- W4309811810 hasConcept C163127949 @default.
- W4309811810 hasConcept C17525397 @default.
- W4309811810 hasConcept C178790620 @default.
- W4309811810 hasConcept C179104552 @default.
- W4309811810 hasConcept C185592680 @default.
- W4309811810 hasConcept C192562407 @default.
- W4309811810 hasConcept C24596552 @default.
- W4309811810 hasConcept C2776673659 @default.
- W4309811810 hasConcept C2779607525 @default.
- W4309811810 hasConcept C2779851234 @default.
- W4309811810 hasConcept C42360764 @default.
- W4309811810 hasConcept C512735826 @default.
- W4309811810 hasConcept C52859227 @default.
- W4309811810 hasConcept C68801617 @default.
- W4309811810 hasConceptScore W4309811810C104779481 @default.
- W4309811810 hasConceptScore W4309811810C111368507 @default.
- W4309811810 hasConceptScore W4309811810C115540264 @default.
- W4309811810 hasConceptScore W4309811810C127313418 @default.
- W4309811810 hasConceptScore W4309811810C127413603 @default.
- W4309811810 hasConceptScore W4309811810C139066938 @default.
- W4309811810 hasConceptScore W4309811810C140205800 @default.
- W4309811810 hasConceptScore W4309811810C147789679 @default.
- W4309811810 hasConceptScore W4309811810C159985019 @default.
- W4309811810 hasConceptScore W4309811810C161790260 @default.
- W4309811810 hasConceptScore W4309811810C163127949 @default.
- W4309811810 hasConceptScore W4309811810C17525397 @default.
- W4309811810 hasConceptScore W4309811810C178790620 @default.
- W4309811810 hasConceptScore W4309811810C179104552 @default.
- W4309811810 hasConceptScore W4309811810C185592680 @default.
- W4309811810 hasConceptScore W4309811810C192562407 @default.
- W4309811810 hasConceptScore W4309811810C24596552 @default.
- W4309811810 hasConceptScore W4309811810C2776673659 @default.
- W4309811810 hasConceptScore W4309811810C2779607525 @default.
- W4309811810 hasConceptScore W4309811810C2779851234 @default.
- W4309811810 hasConceptScore W4309811810C42360764 @default.
- W4309811810 hasConceptScore W4309811810C512735826 @default.
- W4309811810 hasConceptScore W4309811810C52859227 @default.
- W4309811810 hasConceptScore W4309811810C68801617 @default.
- W4309811810 hasIssue "26" @default.
- W4309811810 hasLocation W43098118101 @default.
- W4309811810 hasOpenAccess W4309811810 @default.
- W4309811810 hasPrimaryLocation W43098118101 @default.
- W4309811810 hasRelatedWork W1968638126 @default.
- W4309811810 hasRelatedWork W1969855008 @default.
- W4309811810 hasRelatedWork W1994834115 @default.
- W4309811810 hasRelatedWork W2001782789 @default.
- W4309811810 hasRelatedWork W2026663061 @default.
- W4309811810 hasRelatedWork W2049980304 @default.
- W4309811810 hasRelatedWork W2070510966 @default.
- W4309811810 hasRelatedWork W2951216796 @default.
- W4309811810 hasRelatedWork W2999433638 @default.
- W4309811810 hasRelatedWork W4293215535 @default.
- W4309811810 hasVolume "MA2022-02" @default.
- W4309811810 isParatext "false" @default.
- W4309811810 isRetracted "false" @default.
- W4309811810 workType "article" @default.