Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309849204> ?p ?o ?g. }
- W4309849204 endingPage "2494" @default.
- W4309849204 startingPage "2494" @default.
- W4309849204 abstract "Due to fast analysis speed, analyzing composition content of cement raw meal utilizing near infrared (NIR) spectroscopy, combined with partial least squares regression (PLS), is a reliable alternative method for the cement industry to obtain qualified cement products. However, it has hardly been studied. The raw materials employed in different cement plants differ, and the spectral absorption intensity in the NIR range of the raw meal component is weaker than organic substances, although there are obvious absorption peaks, which place high demands on the generality of modeling and accuracy of the analytical model. An effective modeling procedure is proposed, which optimizes the quantitative analytical model from several modeling stages, and two groups of samples with different raw material types and origins are collected to validate it. For the samples in the prediction set from Qufu, the root mean square error of prediction (RMSEP) of CaO, SiO2, Al2O3, and Fe2O3 were 0.1910, 0.2307, 0.0921, and 0.0429, respectively; the average prediction errors for CaO, SiO2, Al2O3, and Fe2O3 were 0.171%, 0.193%, 0.069%, and 0.032%, respectively; for the samples in the prediction set from Linyi, the RMSEP of CaO, SiO2, Al2O3, and Fe2O3 were 0.1995, 0.1267, 0.0336 and 0.0242, respectively, the average prediction errors for CaO, SiO2, Al2O3, and Fe2O3 were 0.154%, 0.100%, 0.022%, and 0.018%, respectively. The standard methods for chemical analysis of cement require that the mean measurement error for CaO, SiO2, Al2O3, and Fe2O3 should be within 0.40%, 0.30%, 0.20%, and 0.15%, respectively. It is obvious that the results of both groups of samples fully satisfied the requirements of raw material proportioning control of the production line, demonstrating that the modeling procedure has excellent generality, the models established have high prediction accuracy, and the NIR spectroscopy combined with the proposed modeling procedure is a rapid and accurate alternative approach for the analysis of cement raw meal composition content." @default.
- W4309849204 created "2022-11-29" @default.
- W4309849204 creator A5045463152 @default.
- W4309849204 creator A5055701704 @default.
- W4309849204 creator A5090739414 @default.
- W4309849204 date "2022-11-24" @default.
- W4309849204 modified "2023-10-14" @default.
- W4309849204 title "Rapid Analysis of Raw Meal Composition Content Based on NIR Spectroscopy for Cement Raw Material Proportioning Control Process" @default.
- W4309849204 cites W1579868381 @default.
- W4309849204 cites W1973087775 @default.
- W4309849204 cites W1985847939 @default.
- W4309849204 cites W2066536516 @default.
- W4309849204 cites W2084649778 @default.
- W4309849204 cites W2091553043 @default.
- W4309849204 cites W2165449407 @default.
- W4309849204 cites W2256112721 @default.
- W4309849204 cites W2265334518 @default.
- W4309849204 cites W2755107001 @default.
- W4309849204 cites W2774762018 @default.
- W4309849204 cites W2885044358 @default.
- W4309849204 cites W2888053369 @default.
- W4309849204 cites W2904902779 @default.
- W4309849204 cites W2921389585 @default.
- W4309849204 cites W2970499373 @default.
- W4309849204 cites W2991024390 @default.
- W4309849204 cites W2992797949 @default.
- W4309849204 cites W2992869585 @default.
- W4309849204 cites W2998457864 @default.
- W4309849204 cites W3020641624 @default.
- W4309849204 cites W3033094925 @default.
- W4309849204 cites W3045738243 @default.
- W4309849204 cites W3047129524 @default.
- W4309849204 cites W3063354630 @default.
- W4309849204 cites W3119730677 @default.
- W4309849204 cites W3124820833 @default.
- W4309849204 cites W4210453908 @default.
- W4309849204 cites W4225971939 @default.
- W4309849204 cites W4281251012 @default.
- W4309849204 cites W4292358182 @default.
- W4309849204 cites W4295921699 @default.
- W4309849204 cites W4296013589 @default.
- W4309849204 cites W4296143277 @default.
- W4309849204 cites W4296893934 @default.
- W4309849204 cites W4306810810 @default.
- W4309849204 cites W4307287945 @default.
- W4309849204 doi "https://doi.org/10.3390/pr10122494" @default.
- W4309849204 hasPublicationYear "2022" @default.
- W4309849204 type Work @default.
- W4309849204 citedByCount "0" @default.
- W4309849204 crossrefType "journal-article" @default.
- W4309849204 hasAuthorship W4309849204A5045463152 @default.
- W4309849204 hasAuthorship W4309849204A5055701704 @default.
- W4309849204 hasAuthorship W4309849204A5090739414 @default.
- W4309849204 hasBestOaLocation W43098492041 @default.
- W4309849204 hasConcept C105795698 @default.
- W4309849204 hasConcept C113196181 @default.
- W4309849204 hasConcept C121332964 @default.
- W4309849204 hasConcept C159985019 @default.
- W4309849204 hasConcept C178790620 @default.
- W4309849204 hasConcept C185592680 @default.
- W4309849204 hasConcept C192562407 @default.
- W4309849204 hasConcept C206139338 @default.
- W4309849204 hasConcept C22354355 @default.
- W4309849204 hasConcept C33923547 @default.
- W4309849204 hasConcept C39432304 @default.
- W4309849204 hasConcept C43571822 @default.
- W4309849204 hasConcept C43617362 @default.
- W4309849204 hasConcept C48921125 @default.
- W4309849204 hasConcept C523993062 @default.
- W4309849204 hasConcept C62520636 @default.
- W4309849204 hasConceptScore W4309849204C105795698 @default.
- W4309849204 hasConceptScore W4309849204C113196181 @default.
- W4309849204 hasConceptScore W4309849204C121332964 @default.
- W4309849204 hasConceptScore W4309849204C159985019 @default.
- W4309849204 hasConceptScore W4309849204C178790620 @default.
- W4309849204 hasConceptScore W4309849204C185592680 @default.
- W4309849204 hasConceptScore W4309849204C192562407 @default.
- W4309849204 hasConceptScore W4309849204C206139338 @default.
- W4309849204 hasConceptScore W4309849204C22354355 @default.
- W4309849204 hasConceptScore W4309849204C33923547 @default.
- W4309849204 hasConceptScore W4309849204C39432304 @default.
- W4309849204 hasConceptScore W4309849204C43571822 @default.
- W4309849204 hasConceptScore W4309849204C43617362 @default.
- W4309849204 hasConceptScore W4309849204C48921125 @default.
- W4309849204 hasConceptScore W4309849204C523993062 @default.
- W4309849204 hasConceptScore W4309849204C62520636 @default.
- W4309849204 hasFunder F4320321001 @default.
- W4309849204 hasFunder F4320324174 @default.
- W4309849204 hasIssue "12" @default.
- W4309849204 hasLocation W43098492041 @default.
- W4309849204 hasOpenAccess W4309849204 @default.
- W4309849204 hasPrimaryLocation W43098492041 @default.
- W4309849204 hasRelatedWork W2007284385 @default.
- W4309849204 hasRelatedWork W2024115225 @default.
- W4309849204 hasRelatedWork W2035687469 @default.
- W4309849204 hasRelatedWork W2075038157 @default.
- W4309849204 hasRelatedWork W2085867444 @default.
- W4309849204 hasRelatedWork W2112739662 @default.