Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309855520> ?p ?o ?g. }
- W4309855520 endingPage "2056" @default.
- W4309855520 startingPage "2056" @default.
- W4309855520 abstract "The micro-electro-mechanical system (MEMS) gyroscope is a micro-mechanical gyroscope with low cost, small volume, and good reliability. The working principle of the MEMS gyroscope, which is achieved through Coriolis, is different from traditional gyroscopes. The MEMS gyroscope has been widely used in the fields of micro-inertia navigation systems, military, automotive, consumer electronics, mobile applications, robots, industrial, medical, and other fields in micro-inertia navigation systems because of its advantages of small volume, good performance, and low price. The material characteristics of the MEMS gyroscope is very significant for its data output, and the temperature determines its accuracy and limits its further application. In order to eliminate the effect of temperature, the MEMS gyroscope needs to be compensated to improve its accuracy. This study proposed an improved variational modal decomposition-extreme learning machine (VMD-ELM) algorithm based on convolutional neural networks-long short-term memory (CNN-LSTM) and particle swarm optimization-support vector machines (PSO-SVM). By establishing a temperature compensation model, the gyro temperature output signal is optimized and reconstructed, and the gyro output signal with better accuracy is obtained. The VMD algorithm separates the gyro output signal and divides the gyro output signal into low-frequency signals, mid-frequency signals, and high-frequency signals according to the different signal frequencies. Once again, the PSO-SVM model is constructed by the mid-frequency temperature signal to find the temperature error. Finally, the signal is reconstructed through the ELM neural network algorithm, and then, the gyro output signal after noise is obtained. Experimental results show that, by using the improved method, the output of the MEMS gyroscope ranging from -40 to 60 °C reduced, and the temperature drift dramatically declined. For example, the factor of quantization noise (Q) reduced from 1.2419 × 10-4 to 1.0533 × 10-6, the factor of bias instability (B) reduced from 0.0087 to 1.8772 × 10-4, and the factor of random walk of angular velocity (N) reduced from 2.0978 × 10-5 to 1.4985 × 10-6. Furthermore, the output of the MEMS gyroscope ranging from 60 to -40 °C reduced. The factor of Q reduced from 2.9808 × 10-4 to 2.4430 × 10-6, the factor of B reduced from 0.0145 to 7.2426 × 10-4, and the factor of N reduced from 4.5072 × 10-5 to 1.0523 × 10-5. The improved algorithm can be adopted to denoise the output signal of the MEMS gyroscope to improve its accuracy." @default.
- W4309855520 created "2022-11-29" @default.
- W4309855520 creator A5032490156 @default.
- W4309855520 creator A5051916943 @default.
- W4309855520 date "2022-11-24" @default.
- W4309855520 modified "2023-10-01" @default.
- W4309855520 title "Improved VMD-ELM Algorithm for MEMS Gyroscope of Temperature Compensation Model Based on CNN-LSTM and PSO-SVM" @default.
- W4309855520 cites W1966275328 @default.
- W4309855520 cites W2229628845 @default.
- W4309855520 cites W2320960464 @default.
- W4309855520 cites W2343733330 @default.
- W4309855520 cites W2615323704 @default.
- W4309855520 cites W2804873607 @default.
- W4309855520 cites W2935860583 @default.
- W4309855520 cites W2940605071 @default.
- W4309855520 cites W2945236662 @default.
- W4309855520 cites W2968739105 @default.
- W4309855520 cites W2968883378 @default.
- W4309855520 cites W2984565291 @default.
- W4309855520 cites W2991332931 @default.
- W4309855520 cites W3007570339 @default.
- W4309855520 cites W3011235991 @default.
- W4309855520 cites W3034872464 @default.
- W4309855520 cites W3082741592 @default.
- W4309855520 cites W3121884848 @default.
- W4309855520 cites W3140975764 @default.
- W4309855520 cites W3159891787 @default.
- W4309855520 cites W3180868938 @default.
- W4309855520 cites W3181570952 @default.
- W4309855520 cites W4281639178 @default.
- W4309855520 cites W4307161880 @default.
- W4309855520 doi "https://doi.org/10.3390/mi13122056" @default.
- W4309855520 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36557354" @default.
- W4309855520 hasPublicationYear "2022" @default.
- W4309855520 type Work @default.
- W4309855520 citedByCount "1" @default.
- W4309855520 countsByYear W43098555202023 @default.
- W4309855520 crossrefType "journal-article" @default.
- W4309855520 hasAuthorship W4309855520A5032490156 @default.
- W4309855520 hasAuthorship W4309855520A5051916943 @default.
- W4309855520 hasBestOaLocation W43098555201 @default.
- W4309855520 hasConcept C110407247 @default.
- W4309855520 hasConcept C11171543 @default.
- W4309855520 hasConcept C11413529 @default.
- W4309855520 hasConcept C115961682 @default.
- W4309855520 hasConcept C121332964 @default.
- W4309855520 hasConcept C127413603 @default.
- W4309855520 hasConcept C146978453 @default.
- W4309855520 hasConcept C154945302 @default.
- W4309855520 hasConcept C15744967 @default.
- W4309855520 hasConcept C158488048 @default.
- W4309855520 hasConcept C199360897 @default.
- W4309855520 hasConcept C24326235 @default.
- W4309855520 hasConcept C2775924081 @default.
- W4309855520 hasConcept C2779843651 @default.
- W4309855520 hasConcept C2780023022 @default.
- W4309855520 hasConcept C41008148 @default.
- W4309855520 hasConcept C47446073 @default.
- W4309855520 hasConcept C72768775 @default.
- W4309855520 hasConcept C74650414 @default.
- W4309855520 hasConcept C85617194 @default.
- W4309855520 hasConcept C99498987 @default.
- W4309855520 hasConceptScore W4309855520C110407247 @default.
- W4309855520 hasConceptScore W4309855520C11171543 @default.
- W4309855520 hasConceptScore W4309855520C11413529 @default.
- W4309855520 hasConceptScore W4309855520C115961682 @default.
- W4309855520 hasConceptScore W4309855520C121332964 @default.
- W4309855520 hasConceptScore W4309855520C127413603 @default.
- W4309855520 hasConceptScore W4309855520C146978453 @default.
- W4309855520 hasConceptScore W4309855520C154945302 @default.
- W4309855520 hasConceptScore W4309855520C15744967 @default.
- W4309855520 hasConceptScore W4309855520C158488048 @default.
- W4309855520 hasConceptScore W4309855520C199360897 @default.
- W4309855520 hasConceptScore W4309855520C24326235 @default.
- W4309855520 hasConceptScore W4309855520C2775924081 @default.
- W4309855520 hasConceptScore W4309855520C2779843651 @default.
- W4309855520 hasConceptScore W4309855520C2780023022 @default.
- W4309855520 hasConceptScore W4309855520C41008148 @default.
- W4309855520 hasConceptScore W4309855520C47446073 @default.
- W4309855520 hasConceptScore W4309855520C72768775 @default.
- W4309855520 hasConceptScore W4309855520C74650414 @default.
- W4309855520 hasConceptScore W4309855520C85617194 @default.
- W4309855520 hasConceptScore W4309855520C99498987 @default.
- W4309855520 hasFunder F4320321001 @default.
- W4309855520 hasIssue "12" @default.
- W4309855520 hasLocation W43098555201 @default.
- W4309855520 hasLocation W43098555202 @default.
- W4309855520 hasLocation W43098555203 @default.
- W4309855520 hasLocation W43098555204 @default.
- W4309855520 hasOpenAccess W4309855520 @default.
- W4309855520 hasPrimaryLocation W43098555201 @default.
- W4309855520 hasRelatedWork W2071681216 @default.
- W4309855520 hasRelatedWork W2084774577 @default.
- W4309855520 hasRelatedWork W2117488619 @default.
- W4309855520 hasRelatedWork W2133161705 @default.
- W4309855520 hasRelatedWork W2155749422 @default.
- W4309855520 hasRelatedWork W2167876600 @default.
- W4309855520 hasRelatedWork W2378958027 @default.