Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309858963> ?p ?o ?g. }
- W4309858963 abstract "This study aimed to investigate the diagnostic value of machine-learning (ML) models with multiple classifiers based on non-enhanced CT Radiomics features for differentiating anterior mediastinal cysts (AMCs) from thymomas, and high-risk from low risk thymomas.In total, 201 patients with AMCs and thymomas from three centers were included and divided into two groups: AMCs vs. thymomas, and high-risk vs low-risk thymomas. A radiomics model (RM) was built with 73 radiomics features that were extracted from the three-dimensional images of each patient. A combined model (CM) was built with clinical features and subjective CT finding features combined with radiomics features. For the RM and CM in each group, five selection methods were adopted to select suitable features for the classifier, and seven ML classifiers were employed to build discriminative models. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of each combination.Several classifiers combined with suitable selection methods demonstrated good diagnostic performance with areas under the curves (AUCs) of 0.876 and 0.922 for the RM and CM in group 1 and 0.747 and 0.783 for the RM and CM in group 2, respectively. The combination of support vector machine (SVM) as the feature-selection method and Gradient Boosting Decision Tree (GBDT) as the classification algorithm represented the best comprehensive discriminative ability in both group. Comparatively, assessments by radiologists achieved a middle AUCs of 0.656 and 0.626 in the two groups, which were lower than the AUCs of the RM and CM. Most CMs exhibited higher AUC value compared to RMs in both groups, among them only a few CMs demonstrated better performance with significant difference in group 1.Our ML models demonstrated good performance for differentiation of AMCs from thymomas and low-risk from high-risk thymomas. ML based on non-enhanced CT radiomics may serve as a novel preoperative tool." @default.
- W4309858963 created "2022-11-29" @default.
- W4309858963 creator A5002661071 @default.
- W4309858963 creator A5023767649 @default.
- W4309858963 creator A5030331648 @default.
- W4309858963 creator A5032764121 @default.
- W4309858963 creator A5033298072 @default.
- W4309858963 creator A5041044861 @default.
- W4309858963 creator A5048185970 @default.
- W4309858963 creator A5052880489 @default.
- W4309858963 creator A5078074899 @default.
- W4309858963 creator A5091210010 @default.
- W4309858963 date "2022-11-24" @default.
- W4309858963 modified "2023-10-16" @default.
- W4309858963 title "Machine-learning classifiers based on non-enhanced computed tomography radiomics to differentiate anterior mediastinal cysts from thymomas and low-risk from high-risk thymomas: A multi-center study" @default.
- W4309858963 cites W1875240237 @default.
- W4309858963 cites W1968469531 @default.
- W4309858963 cites W2001834878 @default.
- W4309858963 cites W2009381346 @default.
- W4309858963 cites W2017298079 @default.
- W4309858963 cites W2026878382 @default.
- W4309858963 cites W2031445512 @default.
- W4309858963 cites W2051854131 @default.
- W4309858963 cites W2076886257 @default.
- W4309858963 cites W2081736720 @default.
- W4309858963 cites W2097596497 @default.
- W4309858963 cites W2120891273 @default.
- W4309858963 cites W2317456172 @default.
- W4309858963 cites W2426031434 @default.
- W4309858963 cites W2607616723 @default.
- W4309858963 cites W2773132545 @default.
- W4309858963 cites W2790195633 @default.
- W4309858963 cites W2900587280 @default.
- W4309858963 cites W2940148437 @default.
- W4309858963 cites W2946868693 @default.
- W4309858963 cites W2952609086 @default.
- W4309858963 cites W2972402025 @default.
- W4309858963 cites W3005956073 @default.
- W4309858963 cites W3032194126 @default.
- W4309858963 cites W3106949070 @default.
- W4309858963 cites W3120537376 @default.
- W4309858963 cites W3134563761 @default.
- W4309858963 cites W3155205237 @default.
- W4309858963 cites W3156614941 @default.
- W4309858963 doi "https://doi.org/10.3389/fonc.2022.1043163" @default.
- W4309858963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36505817" @default.
- W4309858963 hasPublicationYear "2022" @default.
- W4309858963 type Work @default.
- W4309858963 citedByCount "1" @default.
- W4309858963 countsByYear W43098589632023 @default.
- W4309858963 crossrefType "journal-article" @default.
- W4309858963 hasAuthorship W4309858963A5002661071 @default.
- W4309858963 hasAuthorship W4309858963A5023767649 @default.
- W4309858963 hasAuthorship W4309858963A5030331648 @default.
- W4309858963 hasAuthorship W4309858963A5032764121 @default.
- W4309858963 hasAuthorship W4309858963A5033298072 @default.
- W4309858963 hasAuthorship W4309858963A5041044861 @default.
- W4309858963 hasAuthorship W4309858963A5048185970 @default.
- W4309858963 hasAuthorship W4309858963A5052880489 @default.
- W4309858963 hasAuthorship W4309858963A5078074899 @default.
- W4309858963 hasAuthorship W4309858963A5091210010 @default.
- W4309858963 hasBestOaLocation W43098589631 @default.
- W4309858963 hasConcept C119857082 @default.
- W4309858963 hasConcept C12267149 @default.
- W4309858963 hasConcept C126838900 @default.
- W4309858963 hasConcept C148483581 @default.
- W4309858963 hasConcept C151956035 @default.
- W4309858963 hasConcept C153180895 @default.
- W4309858963 hasConcept C154945302 @default.
- W4309858963 hasConcept C169258074 @default.
- W4309858963 hasConcept C2778559731 @default.
- W4309858963 hasConcept C41008148 @default.
- W4309858963 hasConcept C58471807 @default.
- W4309858963 hasConcept C70153297 @default.
- W4309858963 hasConcept C71924100 @default.
- W4309858963 hasConcept C84525736 @default.
- W4309858963 hasConcept C97931131 @default.
- W4309858963 hasConceptScore W4309858963C119857082 @default.
- W4309858963 hasConceptScore W4309858963C12267149 @default.
- W4309858963 hasConceptScore W4309858963C126838900 @default.
- W4309858963 hasConceptScore W4309858963C148483581 @default.
- W4309858963 hasConceptScore W4309858963C151956035 @default.
- W4309858963 hasConceptScore W4309858963C153180895 @default.
- W4309858963 hasConceptScore W4309858963C154945302 @default.
- W4309858963 hasConceptScore W4309858963C169258074 @default.
- W4309858963 hasConceptScore W4309858963C2778559731 @default.
- W4309858963 hasConceptScore W4309858963C41008148 @default.
- W4309858963 hasConceptScore W4309858963C58471807 @default.
- W4309858963 hasConceptScore W4309858963C70153297 @default.
- W4309858963 hasConceptScore W4309858963C71924100 @default.
- W4309858963 hasConceptScore W4309858963C84525736 @default.
- W4309858963 hasConceptScore W4309858963C97931131 @default.
- W4309858963 hasFunder F4320336596 @default.
- W4309858963 hasLocation W43098589631 @default.
- W4309858963 hasLocation W43098589632 @default.
- W4309858963 hasLocation W43098589633 @default.
- W4309858963 hasOpenAccess W4309858963 @default.
- W4309858963 hasPrimaryLocation W43098589631 @default.
- W4309858963 hasRelatedWork W2799952019 @default.
- W4309858963 hasRelatedWork W2804210803 @default.