Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309913710> ?p ?o ?g. }
- W4309913710 endingPage "102807" @default.
- W4309913710 startingPage "102807" @default.
- W4309913710 abstract "PCR artifacts are an ever-present challenge in sequencing applications. These artifacts can seriously limit the analysis and interpretation of low-template samples and mixtures, especially with respect to a minor contributor. In medicine, molecular barcoding techniques have been employed to decrease the impact of PCR error and to allow the examination of low-abundance somatic variation. In principle, it should be possible to apply the same techniques to the forensic analysis of mixtures. To that end, several short tandem repeat loci were selected for targeted sequencing, and a bioinformatic pipeline for analyzing the sequence data was developed. The pipeline notes the relevant unique molecular identifiers (UMIs) attached to each read and, using machine learning, filters the noise products out of the set of potential alleles. To evaluate this pipeline, DNA from pairs of individuals were mixed at different ratios (1-1, 1-9) and sequenced with different starting amounts of DNA (10, 1 and 0.1 ng). Naïvely using the information in the molecular barcodes led to increased performance, with the machine learning resulting in an additional benefit. In concrete terms, using the UMI data results in less noise for a given amount of drop out. For instance, if thresholds are selected that filter out a quarter of the true alleles, using read counts accepts 2381 noise alleles and using raw UMI counts accepts 1726 noise alleles, while the machine learning approach only accepts 307." @default.
- W4309913710 created "2022-11-30" @default.
- W4309913710 creator A5009084116 @default.
- W4309913710 creator A5018204575 @default.
- W4309913710 creator A5020105008 @default.
- W4309913710 creator A5023761463 @default.
- W4309913710 creator A5026988184 @default.
- W4309913710 creator A5049581157 @default.
- W4309913710 date "2023-03-01" @default.
- W4309913710 modified "2023-09-30" @default.
- W4309913710 title "Using unique molecular identifiers to improve allele calling in low-template mixtures" @default.
- W4309913710 cites W1914049201 @default.
- W4309913710 cites W1969710474 @default.
- W4309913710 cites W2011645981 @default.
- W4309913710 cites W2019581917 @default.
- W4309913710 cites W2019955264 @default.
- W4309913710 cites W2021391822 @default.
- W4309913710 cites W2032467008 @default.
- W4309913710 cites W2036504440 @default.
- W4309913710 cites W2068379897 @default.
- W4309913710 cites W2084874201 @default.
- W4309913710 cites W2112066577 @default.
- W4309913710 cites W2127793112 @default.
- W4309913710 cites W2140159173 @default.
- W4309913710 cites W2142014187 @default.
- W4309913710 cites W2143197030 @default.
- W4309913710 cites W2156025360 @default.
- W4309913710 cites W2157825442 @default.
- W4309913710 cites W2170962119 @default.
- W4309913710 cites W2295956658 @default.
- W4309913710 cites W2569995699 @default.
- W4309913710 cites W2583832594 @default.
- W4309913710 cites W2620598370 @default.
- W4309913710 cites W2673522074 @default.
- W4309913710 cites W2770499955 @default.
- W4309913710 cites W2802643674 @default.
- W4309913710 cites W2905159204 @default.
- W4309913710 cites W3120817351 @default.
- W4309913710 cites W3133077078 @default.
- W4309913710 cites W3141379057 @default.
- W4309913710 cites W4206138289 @default.
- W4309913710 doi "https://doi.org/10.1016/j.fsigen.2022.102807" @default.
- W4309913710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36462297" @default.
- W4309913710 hasPublicationYear "2023" @default.
- W4309913710 type Work @default.
- W4309913710 citedByCount "1" @default.
- W4309913710 countsByYear W43099137102023 @default.
- W4309913710 crossrefType "journal-article" @default.
- W4309913710 hasAuthorship W4309913710A5009084116 @default.
- W4309913710 hasAuthorship W4309913710A5018204575 @default.
- W4309913710 hasAuthorship W4309913710A5020105008 @default.
- W4309913710 hasAuthorship W4309913710A5023761463 @default.
- W4309913710 hasAuthorship W4309913710A5026988184 @default.
- W4309913710 hasAuthorship W4309913710A5049581157 @default.
- W4309913710 hasConcept C106131492 @default.
- W4309913710 hasConcept C115961682 @default.
- W4309913710 hasConcept C119857082 @default.
- W4309913710 hasConcept C124101348 @default.
- W4309913710 hasConcept C153180895 @default.
- W4309913710 hasConcept C154504017 @default.
- W4309913710 hasConcept C154945302 @default.
- W4309913710 hasConcept C163294075 @default.
- W4309913710 hasConcept C199360897 @default.
- W4309913710 hasConcept C31972630 @default.
- W4309913710 hasConcept C41008148 @default.
- W4309913710 hasConcept C43521106 @default.
- W4309913710 hasConcept C70721500 @default.
- W4309913710 hasConcept C86803240 @default.
- W4309913710 hasConcept C99498987 @default.
- W4309913710 hasConceptScore W4309913710C106131492 @default.
- W4309913710 hasConceptScore W4309913710C115961682 @default.
- W4309913710 hasConceptScore W4309913710C119857082 @default.
- W4309913710 hasConceptScore W4309913710C124101348 @default.
- W4309913710 hasConceptScore W4309913710C153180895 @default.
- W4309913710 hasConceptScore W4309913710C154504017 @default.
- W4309913710 hasConceptScore W4309913710C154945302 @default.
- W4309913710 hasConceptScore W4309913710C163294075 @default.
- W4309913710 hasConceptScore W4309913710C199360897 @default.
- W4309913710 hasConceptScore W4309913710C31972630 @default.
- W4309913710 hasConceptScore W4309913710C41008148 @default.
- W4309913710 hasConceptScore W4309913710C43521106 @default.
- W4309913710 hasConceptScore W4309913710C70721500 @default.
- W4309913710 hasConceptScore W4309913710C86803240 @default.
- W4309913710 hasConceptScore W4309913710C99498987 @default.
- W4309913710 hasFunder F4320306098 @default.
- W4309913710 hasFunder F4320332508 @default.
- W4309913710 hasFunder F4320337430 @default.
- W4309913710 hasLocation W43099137101 @default.
- W4309913710 hasLocation W43099137102 @default.
- W4309913710 hasOpenAccess W4309913710 @default.
- W4309913710 hasPrimaryLocation W43099137101 @default.
- W4309913710 hasRelatedWork W1579982567 @default.
- W4309913710 hasRelatedWork W1899329334 @default.
- W4309913710 hasRelatedWork W2369334000 @default.
- W4309913710 hasRelatedWork W2594268324 @default.
- W4309913710 hasRelatedWork W2900296928 @default.
- W4309913710 hasRelatedWork W2921621877 @default.
- W4309913710 hasRelatedWork W3193765978 @default.