Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309930488> ?p ?o ?g. }
- W4309930488 endingPage "106308" @default.
- W4309930488 startingPage "106308" @default.
- W4309930488 abstract "The identification of early-stage Parkinson's disease (PD) is important for the effective management of patients, affecting their treatment and prognosis. Recently, structural brain networks (SBNs) have been used to diagnose PD. However, how to mine abnormal patterns from high-dimensional SBNs has been a challenge due to the complex topology of the brain. Meanwhile, the existing prediction mechanisms of deep learning models are often complicated, and it is difficult to extract effective interpretations. In addition, most works only focus on the classification of imaging and ignore clinical scores in practical applications, which limits the ability of the model. Inspired by the regional modularity of SBNs, we adopted graph learning from the perspective of node clustering to construct an interpretable framework for PD classification.In this study, a multi-task graph structure learning framework based on node clustering (MNC-Net) is proposed for the early diagnosis of PD. Specifically, we modeled complex SBNs into modular graphs that facilitated the representation learning of abnormal patterns. Traditional graph neural networks are optimized through graph structure learning based on node clustering, which identifies potentially abnormal brain regions and reduces the impact of irrelevant noise. Furthermore, we employed a regression task to link clinical scores to disease classification, and incorporated latent domain information into model training through multi-task learning.We validated the proposed approach on the Parkinsons Progression Markers Initiative dataset. Experimental results showed that our MNC-Net effectively separated the early-stage PD from healthy controls(HC) with an accuracy of 95.5%. The t-SNE figures have showed that our graph structure learning method can capture more efficient and discriminatory features. Furthermore, node clustering parameters were used as important weights to extract salient task-related brain regions(ROIs). These ROIs are involved in the development of mood disorders, tremors, imbalances and other symptoms, highlighting the importance of memory, language and mild motor function in early PD. In addition, statistical results from clinical scores confirmed that our model could capture abnormal connectivity that was significantly different between PD and HC. These results are consistent with previous studies, demonstrating the interpretability of our methods." @default.
- W4309930488 created "2022-11-30" @default.
- W4309930488 creator A5033172110 @default.
- W4309930488 creator A5054008561 @default.
- W4309930488 creator A5066941110 @default.
- W4309930488 creator A5070509525 @default.
- W4309930488 creator A5073494285 @default.
- W4309930488 date "2023-01-01" @default.
- W4309930488 modified "2023-10-04" @default.
- W4309930488 title "MNC-Net: Multi-task graph structure learning based on node clustering for early Parkinson’s disease diagnosis" @default.
- W4309930488 cites W1557133730 @default.
- W4309930488 cites W1561600285 @default.
- W4309930488 cites W1976756294 @default.
- W4309930488 cites W1988494453 @default.
- W4309930488 cites W1997147102 @default.
- W4309930488 cites W1997169200 @default.
- W4309930488 cites W1999807227 @default.
- W4309930488 cites W2005821483 @default.
- W4309930488 cites W2011815991 @default.
- W4309930488 cites W2037041575 @default.
- W4309930488 cites W2071135389 @default.
- W4309930488 cites W2120259577 @default.
- W4309930488 cites W2124764780 @default.
- W4309930488 cites W2168463394 @default.
- W4309930488 cites W2567684291 @default.
- W4309930488 cites W2734369895 @default.
- W4309930488 cites W2771313685 @default.
- W4309930488 cites W2779020697 @default.
- W4309930488 cites W2793248913 @default.
- W4309930488 cites W2803727374 @default.
- W4309930488 cites W2883529545 @default.
- W4309930488 cites W2890970769 @default.
- W4309930488 cites W2963944755 @default.
- W4309930488 cites W2982287615 @default.
- W4309930488 cites W2994056986 @default.
- W4309930488 cites W3017135785 @default.
- W4309930488 cites W3022315685 @default.
- W4309930488 cites W3106282212 @default.
- W4309930488 cites W3113150976 @default.
- W4309930488 cites W3120007598 @default.
- W4309930488 cites W3155450325 @default.
- W4309930488 cites W3179262290 @default.
- W4309930488 cites W3199008037 @default.
- W4309930488 cites W3217103056 @default.
- W4309930488 cites W4210257598 @default.
- W4309930488 doi "https://doi.org/10.1016/j.compbiomed.2022.106308" @default.
- W4309930488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36462371" @default.
- W4309930488 hasPublicationYear "2023" @default.
- W4309930488 type Work @default.
- W4309930488 citedByCount "3" @default.
- W4309930488 countsByYear W43099304882023 @default.
- W4309930488 crossrefType "journal-article" @default.
- W4309930488 hasAuthorship W4309930488A5033172110 @default.
- W4309930488 hasAuthorship W4309930488A5054008561 @default.
- W4309930488 hasAuthorship W4309930488A5066941110 @default.
- W4309930488 hasAuthorship W4309930488A5070509525 @default.
- W4309930488 hasAuthorship W4309930488A5073494285 @default.
- W4309930488 hasConcept C108583219 @default.
- W4309930488 hasConcept C119857082 @default.
- W4309930488 hasConcept C127413603 @default.
- W4309930488 hasConcept C132525143 @default.
- W4309930488 hasConcept C136764020 @default.
- W4309930488 hasConcept C153180895 @default.
- W4309930488 hasConcept C154945302 @default.
- W4309930488 hasConcept C22047676 @default.
- W4309930488 hasConcept C2779478453 @default.
- W4309930488 hasConcept C34947359 @default.
- W4309930488 hasConcept C41008148 @default.
- W4309930488 hasConcept C54355233 @default.
- W4309930488 hasConcept C59404180 @default.
- W4309930488 hasConcept C62611344 @default.
- W4309930488 hasConcept C66938386 @default.
- W4309930488 hasConcept C73555534 @default.
- W4309930488 hasConcept C80444323 @default.
- W4309930488 hasConcept C86803240 @default.
- W4309930488 hasConceptScore W4309930488C108583219 @default.
- W4309930488 hasConceptScore W4309930488C119857082 @default.
- W4309930488 hasConceptScore W4309930488C127413603 @default.
- W4309930488 hasConceptScore W4309930488C132525143 @default.
- W4309930488 hasConceptScore W4309930488C136764020 @default.
- W4309930488 hasConceptScore W4309930488C153180895 @default.
- W4309930488 hasConceptScore W4309930488C154945302 @default.
- W4309930488 hasConceptScore W4309930488C22047676 @default.
- W4309930488 hasConceptScore W4309930488C2779478453 @default.
- W4309930488 hasConceptScore W4309930488C34947359 @default.
- W4309930488 hasConceptScore W4309930488C41008148 @default.
- W4309930488 hasConceptScore W4309930488C54355233 @default.
- W4309930488 hasConceptScore W4309930488C59404180 @default.
- W4309930488 hasConceptScore W4309930488C62611344 @default.
- W4309930488 hasConceptScore W4309930488C66938386 @default.
- W4309930488 hasConceptScore W4309930488C73555534 @default.
- W4309930488 hasConceptScore W4309930488C80444323 @default.
- W4309930488 hasConceptScore W4309930488C86803240 @default.
- W4309930488 hasLocation W43099304881 @default.
- W4309930488 hasLocation W43099304882 @default.
- W4309930488 hasOpenAccess W4309930488 @default.
- W4309930488 hasPrimaryLocation W43099304881 @default.
- W4309930488 hasRelatedWork W2187926129 @default.