Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309955906> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4309955906 abstract "For any particular class of graphs, algorithms for computational problems restricted to the class often rely on structural properties that depend on the specific problem at hand. This begs the question if a large set of such results can be explained by some common problem conditions. We propose such conditions for $HH$-subgraph-free graphs. For a set of graphs $HH$, a graph $G$ is $HH$-subgraph-free if $G$ does not contain any of graph from $H$ as a subgraph. Our conditions are easy to state. A graph problem must be efficiently solvable on graphs of bounded treewidth, computationally hard on subcubic graphs, and computational hardness must be preserved under edge subdivision of subcubic graphs. Our meta-classification says that if a graph problem satisfies all three conditions, then for every finite set $HH$, it is ``efficiently solvable'' on $HH$-subgraph-free graphs if $HH$ contains a disjoint union of one or more paths and subdivided claws, and is ``computationally hard'' otherwise. We illustrate the broad applicability of our meta-classification by obtaining a dichotomy between polynomial-time solvability and NP-completeness for many well-known partitioning, covering and packing problems, network design problems and width parameter problems. For other problems, we obtain a dichotomy between almost-linear-time solvability and having no subquadratic-time algorithm (conditioned on some hardness hypotheses). The proposed framework thus gives a simple pathway to determine the complexity of graph problems on $HH$-subgraph-free graphs. This is confirmed even more by the fact that along the way, we uncover and resolve several open questions from the literature." @default.
- W4309955906 created "2022-11-30" @default.
- W4309955906 creator A5003084202 @default.
- W4309955906 creator A5007044838 @default.
- W4309955906 creator A5013230954 @default.
- W4309955906 creator A5027487467 @default.
- W4309955906 creator A5039235742 @default.
- W4309955906 creator A5041371022 @default.
- W4309955906 creator A5048388564 @default.
- W4309955906 date "2022-11-23" @default.
- W4309955906 modified "2023-09-27" @default.
- W4309955906 title "Complexity Framework For Forbidden Subgraphs I: The Framework" @default.
- W4309955906 doi "https://doi.org/10.48550/arxiv.2211.12887" @default.
- W4309955906 hasPublicationYear "2022" @default.
- W4309955906 type Work @default.
- W4309955906 citedByCount "0" @default.
- W4309955906 crossrefType "posted-content" @default.
- W4309955906 hasAuthorship W4309955906A5003084202 @default.
- W4309955906 hasAuthorship W4309955906A5007044838 @default.
- W4309955906 hasAuthorship W4309955906A5013230954 @default.
- W4309955906 hasAuthorship W4309955906A5027487467 @default.
- W4309955906 hasAuthorship W4309955906A5039235742 @default.
- W4309955906 hasAuthorship W4309955906A5041371022 @default.
- W4309955906 hasAuthorship W4309955906A5048388564 @default.
- W4309955906 hasBestOaLocation W43099559061 @default.
- W4309955906 hasConcept C114614502 @default.
- W4309955906 hasConcept C118615104 @default.
- W4309955906 hasConcept C132525143 @default.
- W4309955906 hasConcept C132569581 @default.
- W4309955906 hasConcept C134306372 @default.
- W4309955906 hasConcept C160446614 @default.
- W4309955906 hasConcept C191241153 @default.
- W4309955906 hasConcept C203776342 @default.
- W4309955906 hasConcept C22149727 @default.
- W4309955906 hasConcept C2778012994 @default.
- W4309955906 hasConcept C311688 @default.
- W4309955906 hasConcept C33923547 @default.
- W4309955906 hasConcept C34388435 @default.
- W4309955906 hasConcept C43517604 @default.
- W4309955906 hasConcept C45340560 @default.
- W4309955906 hasConcept C59824394 @default.
- W4309955906 hasConcept C80899671 @default.
- W4309955906 hasConcept C8554925 @default.
- W4309955906 hasConceptScore W4309955906C114614502 @default.
- W4309955906 hasConceptScore W4309955906C118615104 @default.
- W4309955906 hasConceptScore W4309955906C132525143 @default.
- W4309955906 hasConceptScore W4309955906C132569581 @default.
- W4309955906 hasConceptScore W4309955906C134306372 @default.
- W4309955906 hasConceptScore W4309955906C160446614 @default.
- W4309955906 hasConceptScore W4309955906C191241153 @default.
- W4309955906 hasConceptScore W4309955906C203776342 @default.
- W4309955906 hasConceptScore W4309955906C22149727 @default.
- W4309955906 hasConceptScore W4309955906C2778012994 @default.
- W4309955906 hasConceptScore W4309955906C311688 @default.
- W4309955906 hasConceptScore W4309955906C33923547 @default.
- W4309955906 hasConceptScore W4309955906C34388435 @default.
- W4309955906 hasConceptScore W4309955906C43517604 @default.
- W4309955906 hasConceptScore W4309955906C45340560 @default.
- W4309955906 hasConceptScore W4309955906C59824394 @default.
- W4309955906 hasConceptScore W4309955906C80899671 @default.
- W4309955906 hasConceptScore W4309955906C8554925 @default.
- W4309955906 hasLocation W43099559061 @default.
- W4309955906 hasLocation W43099559062 @default.
- W4309955906 hasOpenAccess W4309955906 @default.
- W4309955906 hasPrimaryLocation W43099559061 @default.
- W4309955906 hasRelatedWork W1502166895 @default.
- W4309955906 hasRelatedWork W2005131446 @default.
- W4309955906 hasRelatedWork W2048932473 @default.
- W4309955906 hasRelatedWork W2131850161 @default.
- W4309955906 hasRelatedWork W2139128412 @default.
- W4309955906 hasRelatedWork W2179401580 @default.
- W4309955906 hasRelatedWork W2460692316 @default.
- W4309955906 hasRelatedWork W2497554862 @default.
- W4309955906 hasRelatedWork W2607123191 @default.
- W4309955906 hasRelatedWork W4292501833 @default.
- W4309955906 isParatext "false" @default.
- W4309955906 isRetracted "false" @default.
- W4309955906 workType "article" @default.