Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309960897> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4309960897 endingPage "285" @default.
- W4309960897 startingPage "271" @default.
- W4309960897 abstract "By 2014, a generative adversarial network (GAN) was proposed by Goodfellow et al. as an intelligent deep-learning approach that could take the advantage of discriminative learners to build a well behaved generative learner. This chapter dives into the details of the standard GAN model as the baseline member of the family of generative deep networks. By covering the principles of GANs, it looks at such early GANs and shows how to obtain satisfactory training. The chapter focuses on two well-known generative models, namely deep convolutional GAN and conditional GAN (CGAN). CGAN for simplicity, is a type of GAN that involves the conditional generation of data instances by a generator model. A conditional setup is used in CGANs, which means that both the generator and discriminator are contingent on auxiliary input from other modalities." @default.
- W4309960897 created "2022-11-30" @default.
- W4309960897 date "2022-11-18" @default.
- W4309960897 modified "2023-09-26" @default.
- W4309960897 title "Generative Adversarial Networks (GANs)" @default.
- W4309960897 cites W3096831136 @default.
- W4309960897 doi "https://doi.org/10.1002/9781119884170.ch12" @default.
- W4309960897 hasPublicationYear "2022" @default.
- W4309960897 type Work @default.
- W4309960897 citedByCount "0" @default.
- W4309960897 crossrefType "other" @default.
- W4309960897 hasConcept C108583219 @default.
- W4309960897 hasConcept C121332964 @default.
- W4309960897 hasConcept C153180895 @default.
- W4309960897 hasConcept C154945302 @default.
- W4309960897 hasConcept C163258240 @default.
- W4309960897 hasConcept C2779803651 @default.
- W4309960897 hasConcept C2780992000 @default.
- W4309960897 hasConcept C2988773926 @default.
- W4309960897 hasConcept C39890363 @default.
- W4309960897 hasConcept C41008148 @default.
- W4309960897 hasConcept C62520636 @default.
- W4309960897 hasConcept C76155785 @default.
- W4309960897 hasConcept C94915269 @default.
- W4309960897 hasConcept C97931131 @default.
- W4309960897 hasConceptScore W4309960897C108583219 @default.
- W4309960897 hasConceptScore W4309960897C121332964 @default.
- W4309960897 hasConceptScore W4309960897C153180895 @default.
- W4309960897 hasConceptScore W4309960897C154945302 @default.
- W4309960897 hasConceptScore W4309960897C163258240 @default.
- W4309960897 hasConceptScore W4309960897C2779803651 @default.
- W4309960897 hasConceptScore W4309960897C2780992000 @default.
- W4309960897 hasConceptScore W4309960897C2988773926 @default.
- W4309960897 hasConceptScore W4309960897C39890363 @default.
- W4309960897 hasConceptScore W4309960897C41008148 @default.
- W4309960897 hasConceptScore W4309960897C62520636 @default.
- W4309960897 hasConceptScore W4309960897C76155785 @default.
- W4309960897 hasConceptScore W4309960897C94915269 @default.
- W4309960897 hasConceptScore W4309960897C97931131 @default.
- W4309960897 hasLocation W43099608971 @default.
- W4309960897 hasOpenAccess W4309960897 @default.
- W4309960897 hasPrimaryLocation W43099608971 @default.
- W4309960897 hasRelatedWork W3005996785 @default.
- W4309960897 hasRelatedWork W3163717707 @default.
- W4309960897 hasRelatedWork W3180903229 @default.
- W4309960897 hasRelatedWork W3208312582 @default.
- W4309960897 hasRelatedWork W4226067002 @default.
- W4309960897 hasRelatedWork W4280544492 @default.
- W4309960897 hasRelatedWork W4288044337 @default.
- W4309960897 hasRelatedWork W4309960897 @default.
- W4309960897 hasRelatedWork W4328029048 @default.
- W4309960897 hasRelatedWork W4385421682 @default.
- W4309960897 isParatext "false" @default.
- W4309960897 isRetracted "false" @default.
- W4309960897 workType "other" @default.