Matches in SemOpenAlex for { <https://semopenalex.org/work/W4309968140> ?p ?o ?g. }
- W4309968140 abstract "Most remote sensing sea ice classification methods use single-source remote sensing data, such as synthetic aperture radar (SAR) data and optical remote sensing data. SAR data contain rich sea ice texture information, but the data are relatively single, making it difficult to distinguish detailed sea ice categories. Optical data include abundant spatial-spectral information, but they are often affected by clouds, fog, and severe weather. Hence, given the limitations of single-source data, the remote sensing sea ice classification accuracy cannot be further improved. A sea ice classification method based on deep learning and multisource remote sensing data fusion is proposed utilizing an improved densely connected convolutional neural network (DenseNet) to mine and fuse the multilevel features of sea ice. According to the characteristics of SAR data and optical data, a dual-branch network structure based on an improved DenseNet is employed for feature extraction, and a squeeze-and-excitation attention mechanism is introduced to weight the fusion features to further enhance the feature weights that can effectively distinguish different types of sea ice. The fully connected network is used to perform the deep fusion of features and classify sea ice. To verify the effectiveness of the proposed method, two sets of sea ice data are utilized for sea ice classification. The experimental results show that the proposed method fully excavates and fuses the multilevel characteristics of heterogeneous data using the improved dual-branch network structure, leverages the complementary characteristics of SAR data and optical data, significantly increases the sea ice classification accuracy, and effectively improves the influence of cloud cover on the sea ice classification accuracy. Compared with the typical single-source data classification method and other heterogeneous data fusion classification methods, the proposed method achieves superior overall classification accuracy (98.49% and 98.58%)." @default.
- W4309968140 created "2022-11-30" @default.
- W4309968140 creator A5006570134 @default.
- W4309968140 creator A5021543762 @default.
- W4309968140 creator A5023874610 @default.
- W4309968140 creator A5029442830 @default.
- W4309968140 creator A5029816082 @default.
- W4309968140 creator A5031426337 @default.
- W4309968140 creator A5037677450 @default.
- W4309968140 date "2022-11-26" @default.
- W4309968140 modified "2023-09-25" @default.
- W4309968140 title "Remote sensing sea ice classification based on DenseNet and heterogeneous data fusion" @default.
- W4309968140 cites W1497089125 @default.
- W4309968140 cites W1552344 @default.
- W4309968140 cites W1964289842 @default.
- W4309968140 cites W1976416886 @default.
- W4309968140 cites W1983162476 @default.
- W4309968140 cites W2021071797 @default.
- W4309968140 cites W2038420319 @default.
- W4309968140 cites W2064289726 @default.
- W4309968140 cites W2074383937 @default.
- W4309968140 cites W2098454176 @default.
- W4309968140 cites W2132855671 @default.
- W4309968140 cites W2155069722 @default.
- W4309968140 cites W2296450878 @default.
- W4309968140 cites W2412588858 @default.
- W4309968140 cites W2567931486 @default.
- W4309968140 cites W2623518586 @default.
- W4309968140 cites W2752782242 @default.
- W4309968140 cites W2765327719 @default.
- W4309968140 cites W2765739551 @default.
- W4309968140 cites W2782517596 @default.
- W4309968140 cites W2782522152 @default.
- W4309968140 cites W2895891814 @default.
- W4309968140 cites W2897170678 @default.
- W4309968140 cites W2901339722 @default.
- W4309968140 cites W2901598901 @default.
- W4309968140 cites W2962037605 @default.
- W4309968140 cites W2963446712 @default.
- W4309968140 cites W2973538958 @default.
- W4309968140 cites W3004968762 @default.
- W4309968140 cites W3033688252 @default.
- W4309968140 cites W3038579873 @default.
- W4309968140 cites W3040593397 @default.
- W4309968140 cites W3048631361 @default.
- W4309968140 cites W3087408134 @default.
- W4309968140 cites W3140120701 @default.
- W4309968140 cites W3165630282 @default.
- W4309968140 cites W3207695734 @default.
- W4309968140 cites W3215314319 @default.
- W4309968140 doi "https://doi.org/10.1117/1.jrs.16.044517" @default.
- W4309968140 hasPublicationYear "2022" @default.
- W4309968140 type Work @default.
- W4309968140 citedByCount "0" @default.
- W4309968140 crossrefType "journal-article" @default.
- W4309968140 hasAuthorship W4309968140A5006570134 @default.
- W4309968140 hasAuthorship W4309968140A5021543762 @default.
- W4309968140 hasAuthorship W4309968140A5023874610 @default.
- W4309968140 hasAuthorship W4309968140A5029442830 @default.
- W4309968140 hasAuthorship W4309968140A5029816082 @default.
- W4309968140 hasAuthorship W4309968140A5031426337 @default.
- W4309968140 hasAuthorship W4309968140A5037677450 @default.
- W4309968140 hasConcept C119599485 @default.
- W4309968140 hasConcept C127313418 @default.
- W4309968140 hasConcept C127413603 @default.
- W4309968140 hasConcept C136894858 @default.
- W4309968140 hasConcept C138885662 @default.
- W4309968140 hasConcept C141353440 @default.
- W4309968140 hasConcept C149767477 @default.
- W4309968140 hasConcept C153294291 @default.
- W4309968140 hasConcept C154945302 @default.
- W4309968140 hasConcept C161798024 @default.
- W4309968140 hasConcept C194520297 @default.
- W4309968140 hasConcept C205649164 @default.
- W4309968140 hasConcept C2776401178 @default.
- W4309968140 hasConcept C33954974 @default.
- W4309968140 hasConcept C41008148 @default.
- W4309968140 hasConcept C41895202 @default.
- W4309968140 hasConcept C52622490 @default.
- W4309968140 hasConcept C62649853 @default.
- W4309968140 hasConcept C81363708 @default.
- W4309968140 hasConcept C87360688 @default.
- W4309968140 hasConceptScore W4309968140C119599485 @default.
- W4309968140 hasConceptScore W4309968140C127313418 @default.
- W4309968140 hasConceptScore W4309968140C127413603 @default.
- W4309968140 hasConceptScore W4309968140C136894858 @default.
- W4309968140 hasConceptScore W4309968140C138885662 @default.
- W4309968140 hasConceptScore W4309968140C141353440 @default.
- W4309968140 hasConceptScore W4309968140C149767477 @default.
- W4309968140 hasConceptScore W4309968140C153294291 @default.
- W4309968140 hasConceptScore W4309968140C154945302 @default.
- W4309968140 hasConceptScore W4309968140C161798024 @default.
- W4309968140 hasConceptScore W4309968140C194520297 @default.
- W4309968140 hasConceptScore W4309968140C205649164 @default.
- W4309968140 hasConceptScore W4309968140C2776401178 @default.
- W4309968140 hasConceptScore W4309968140C33954974 @default.
- W4309968140 hasConceptScore W4309968140C41008148 @default.
- W4309968140 hasConceptScore W4309968140C41895202 @default.
- W4309968140 hasConceptScore W4309968140C52622490 @default.
- W4309968140 hasConceptScore W4309968140C62649853 @default.